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ABSTRACT

This report outlinesthe work accomplished and results achieved in the

preparation of a computer procedure for the integration of ordinary differen-

tial equations. The following characteristics of the programs are specified:

a) The procedure for integration must achieve the accuracy specified by

the user.

b) The procedure must be problem independent and applicable to the in-

tegration of any degree or number of coupled differential equations.

c) The step size_ order and method of integration are to be chosen so

as to minimize computation time while meeting the accuracy requirements.

d) The procedure is to have built-in learning so that previous experience

can be used from one call to the next to decide on the method and order to be

used. The procedure is to be self-modifying.

The following methods were used in the development of the procedure.

a) Adams-Bashforth-Moulton

b) Stetter-Gragg-Butcher

c) Cowell's method of constant Nth order difference

d) Runge-Kutta-Shanks.

Four different orders were used for each of the above methods.

Information is provided on an executive procedure developed to act in an

administrative and bookkeeping capacity for the basic integration routines

indicated above_ plus a start and restart routine_ which contains a separate

Runge-Kutta-Shanks routine. This executive procedure works very satisfactorily.

Three types of problems were used to exercise this procedure. These three

types are the Arenstorf orbits of the restricted three body problem_ the system

of linear differential equations associated with Fourier transforms, and the
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system of linear equations obtained from the partial differential equation

for the vibrating string.

The results of running with a variety of problems and accuracies are

that no particular method seems very superior to any other. All methods

performed well.

The results justify the conclusion that the program developed would

be very useful as a general library program for integrating systems of

differential equations.

Several suggestions for _irther study are outlined in Chapter IV.
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I. INTRODUC TION

In previous work done under this contract, an effort was made to determine

which of the many methods and orders available for integrating ordinary differ-

ential equations was best. While it was possible to show that_ under certain

circumstances, some methods and orders outperformed others, no one method

was clearly superior under all circumstances.

In the present contract, the goal was set of writing a computer program

for the integration of systems of ordinary differential equations (initial

value problems), characterized by the following specifications:

a) The integration must meet a (user's) specified accuracy.

b) The procedure will be problem independent and applicable to the

integration of any degree or number of coupled differential equations.

c) The step size, order, and method of integration are to be chosen by

the procedure so as to be optimum; that is, to minimize the computation

time while meeting the accuracy requirements.

d) The procedure will have built-in learning so that it can use its

experience from one call to the next to decide on the method and order to

be used. The procedure will be self-modifying.

The methods used are as follows:

(i) The Adams-Bashforth-Moulton method,

(2) The Stetter-Gragg-Butcher method,

(3) Cowell's method of constant Nth order differences,

(4) The Runge-Kutta-Shanks method.

With each of these methods, four different orders are used. A history file

is kept showing the past performance scores of each method and order and is

used to select _hich methods and orders are to be employed.



The program works in the following way. Whena call is made in the

procedure to integrate from point a to the point b, this interval is divided

into eighths. The first eighth of the interval is integrated by one method

for each of two different orders, and the times taken by each recorded. The

second eighth is integrated by another method, also for two different orders,

and the times recorded. The winners then competeagainst each other over the

next fourth of the interval. That is, the fastest order of the first method

and the faster order of the secondmethod are both used to integrate the

second fourth of the interval, and the times taken by each recorded. The

faster method of these two is then presumably the best (fastest) of the four

tried, and it is used (alone) to integrate over the last half of the interval.

All of the times measuredabove are then logged in a cumulative history file

and the winners and losers noted.

This history file then is used as the basis for selecting which methods

and orders are chosen each time. !

The first of the two methods is chosen at random (using a randomnumber

generator) from amongthe four available. The second method is chosen to be

the method showing the best history of success amongthe three remaining

methods, with the cumulative history file being used to determine the degree

of success. Then within each method the samekind of selection process with

respect to orders is used. That is, the first order is chosen at random, and

the second order is chosen on the basis of which of the remaining three.has

been the most successful (fastest running) order of that method. Thus it is

seen that the past performance of the different methods and orders influences

the choice of which are allowed to compete, such that the more successful

have a higher probability of being selected. ,
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In using time as the sole estimmte of performance efficiency_ it is

assumed that all orders and methods have satisfactorily met the accuracy

requirements. The accuracy requirements of each method are met by controlling

step size and making error estimates at each step. The method of error

estimate is different for the different methods. In the Runge-Kutta single

step method_ the error is estimated by taking two half steps and then a whole

step. In the Adams and Butcher methods the difference between predictor and

corrector is used. In the Cowell method a mid-range formula is used. (Only

in the Adams and the Runge-Kutta cases is there good theoretical justifica-

tion for using these methods to calculate the actual error -- the error estimates

in the Butcher and Cowell methods are essentially empirical.)

One further feature introduced into the learning process is the gradual

"forgetting" of events in the more distant past. This causes the events in

the distant past to have less influence than those more recent in determining

the score or performance figure of an order and method.

Three types of problems were used to exercise the integration procedure:

First_ the Arenstorf type orbits of the restricted three body

problem (four equations).

Second_ the system of linear differential equations associated with

the Fourier transforms (20 to 40 equations).

Third_ the system of linear differential equations obta'ined from a

discretization of the partial differential equation for ths vibrating string

(50 to i00 equations).

The first of these is characterized by the necessity of frequent step

size change. The other two have no need for step size change once the correct

step is found.



The preliminary results of running with a variety of problems and

accuracies is that no particular method seemsto be exceptionally superior

to any other, it did appear that, for the accuracy range used_ certain orders

of somemethods were inappropriate. Also_ for a given method one particular

order usually dominated, but which one dominated dependedon the accuracy

being asked and to someextent the problem. In any event the program adapted

quite rapidly to the characteristics of a particular problem and accuracy.

All methods performed well and, for different problems, different methods

showedup more successfully. For example, the Runge-Kutta method was most

successful when frequent step size changeswere required, but the multistep

methods performed better when long runs of uniform_ step size were appropriate.

The results justify the conclusion that the present program would be

suitable and effective as a general library program for integrating systems

of differential equations.
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II. INTEGRATION METHODS

A. The Method of Adams; Bashforth and Moulton

i. Description of the Method

The method investigated consists of the combination of two different

versions of the method of Adams into a predictor-corrector system [ 5 ]. The

use of this system to obtain numerical solutions to a set of simultaneous

differential equations with given initial conditions is independent both of

the number of equations in the set to be solved and of the orders of the

individual equations in the set; provided_ however_ that each equation of

order m is expressed as a set of m coupled first order equations.

In general then_ one deals with the system of equations

j'(x)-Tx y(x)--f x,y(x); (i-i)

"-_I "9 "@

where y, y_ and f are vectors_ each having a number of components_ N_ equal
k

L mi_ where k is the number of equations in the set to be solved_ and theto

i=l

m. are their individual orders.
1

This vector differential equation is equivalent to the integral

equation

y(x+h) = x + _+h ?/ -_
; <t,y(t))dt (1-2)

At the point x = x
q Xq_ I + h_ this integral is approximated first by

q-1

_o;'' + hVq -- Jq-1 m Bq-l,q-l-S_
_--0

(l-3a)

and then repeatedly by



q-i

= h_q,of + 3q =0 q-_ _

*
= h_ f + C, _=0,1,2,

q,o q
(1-3b)

which converges toward yq = _(Xq) as _ increases. Formula (l-3a) is called

the Adams-Bashforth predictor equation, and formula (l-3b) is the Adams-

Moulton corrector.

The coefficients _qP and _qp are derived by the equivalent of inte-

grating Lagrangian polynomials fitted to 3, but are independent of both 3 and h.

The polynomial for the predictor is of degree q-i passing through the q points

_0' _i' "' _ while that for the corrector is of degree q passing through
q- i'

the q + i points 30, 31, ., 3 .q

An explicit formula for the Bqp is

(_l)Rt,'¢, fp+z',= .<pj p+ < p J p+l+ "
• + q = 0,1,2,

, p = 0, i, •, q

/p+i"
where the \ P ] represent binomial coefficients and the 7p are found by the

recursion relation

i

i + + = i, 0, 1,2
7p + 2 7p-i " _ 7o P = '

and an explicit formula for the _qp is

= " "_" , p+l'_* p._ { P '_., ," .
_qp = (-1) L..,p]-yp + t, p ]_'p+l + "

{q_ *] q--0,1,2,Q _

",p,/q.;;. , p = O, 1, -_ q

where Yo = i and 7p = 7p - 7p-l' P = 1,2,3, ....

6



Bounds on the errors for the two approximations are the maximums

within the interval [Xo,X q] of

hq+l d q+l
Yq

dx q+l

(for Adams-Bashforth) (l-4a)

and of

(for Adams-Moult on ) (l-4b)

and M_ the order of the predictor-corrector system_ is assumed to approximate

that of the corrector_ which is q + i.

2. The Computer Procedure

The p_ocedure ADA_ itself is written to be included in programs

written in single precision for the Burroughs B-5500 computer. The language

is Algol 60 augmented by additional features available in the Algol compiler

for the B-5500. There are no unusual hardware requirements_ because all input

and output to the procedure is under control of the including program through

the formal parameter list. All variables not in the formal parameter list are

local to the procedure_ and no files are used by the procedure.

2 .i Parameters and Variables

The following lists of formal parameters and local variables will be

useful in describing the operation of procedure ADAMS. In the remainder of

this discussion the interchange of upper and lower case letters_ necessitated

7



by approximating the notation [ 5] within the limited character set available

to a computer, is straight-forward and will be done freely without further

comment.

Identifier Type

N Integer

XI Re al

XF Real

Y Real Array

F Procedure

P Real

Q Integer

DX Real

EA Real Array

ER Re al Array

ADAMSCOEFF • Real Array

RKSFNS Integer

RKS ORDER Int ege r

RKB COEFF Real Array

START Integer
Procedure

SHANKS Procedure

Formal Parameters

Usage or Meaning

The number of components in the vectors y_ EA, and ER.

Initial value of the independent variable.

Final value of'the independent variable.

Current dependent variable vector. Contains initial

values at entry and final values at exit.

Calculates the vector f x,y(x .

Power of CI used in error control.

Number of back _ points used in the approximating

polynomials. One less than M, the order of the method.

Upper bound on the initial step size.

Absolute error bound vector.

Relative error bound vector.

Contains the _qp_ the _ClP' and 1- .

Function evaluations per step for procedures START
and SHANKS.

Order of R.K.S. method to be used by START and SHANKS.

Coefficients for START and S_. See the descip-

tions of START and S_ elsewhere in this report
for details.

Gives the necessary points for starting and re-

starting. Name contains the factor by which CI is

multiplied to coordinate step size between START

and ADAN_.

Used to complete fractional steps at the ends of

intervals.

8



The procedures START, SHANKS_ and F, as well as the coefficient

...._,_ ....._,r, und Ri_COEFF_ are not a part of the procedure ADAMS and

m_,tst be included separate ].y in all programs using ADA}@9 (see 2.2 and 2.9).

Iden-0i fier

y Re al

INTERVAL Re a i

C! integer

H Real

C2 Re ai

GR Re a.1

CY_GE Re al

E_P,A_OR Re a i

FP Reai Array

FC Real Array

FH Re'__ £rray

YP .Re u_] P_;""';_V-

YC Real Array

""_.tm P,ea" Arrab _

Local Variables

Usage or Meanin@

current value of the independent variable.X
q

XF - XI, the interval of integration.

Two, to an integral power. Determines H.

INTERVAL / CI_ the current step size.

Nr_mber of steps of size H remaining from X to XF.

il - _q+i/_q+l _ used with CHANGE and ERROR.

Controls the number of iterations of the corrector

equat ion.

Controls the error and running time through the

step size.

--_' _(P), 7 (v) of (1-bb).
Predicted yq vector, the q

Corrected _q vector, _(C) 7 (v+l)q in (1-_b).

history vector. Contains 2q-i back points for

each of the N components of f.

_(p) _(o) of (i-}a).
Predicted yq vector_ the y q

Corrected _q vector_ _(c) the _(v+l)yq of (l-3b).

Back y vector, b), needed for restarting a.fter

halving.

YU; Real A_:'ra.y A]ternate YB.

All ±oc.__!._rray;:_ ,'iredynamic with respect to N and Q and_ to avoid

.,:_o\rin S ,_-_.rg_ numbers o_ ::omoonents_ reversals in meaning are made on successive

9



steps or iterations between FP and FC_ between 17 and YC, and between YB

and YD. The FH vector array is indexed cyclically for the same reason.

For further details consult the flow diagram and the listing of procedure

ADAMB following this discussion.

2.2 The F Procedure

A procedure for calculating the vector y' = f.x,y(x)/_ must be in-

cluded global to a call for procedure ADAMB for each set of differential

equations to be solved by a program using ADAMS. This procedure is called

by ADA_ as the formal parameter F and must itself have the following formal _

parameter list:

Identifier Type

N Integer

X Real

YV Real Array

FV Real Array

Usage or Meanin_

Number of components in the vectors YV and FV.

Current value of _he independent variable.

Current dependent variable vector (input).

F value vector (output).

N and X may be called by value. The arrays YV and FV are one-

dimensional starting at zero and must be called by name.

2.3 Orders Available

The procedure ADAMS is written to be completely general with regard

to order, and any order may be used if the necessary coefficients are placed

in the ADAMBCOEFF array. For a given order M = q + i, there are 2q + 2 = 2M

coefficients which should appear in the array beginning at position zero in

the following order:

_q- i_q-l' _q-l, q-2 _ "' _q-l,o' _q,q'_q,q-f' "'_ * .i *q_o'I -Yq+i/Yq+l I"

i0



2.4 Startin_ an Integration

Since the Adams method is a multistep method it cannot start itself

but must rely on a starting procedure that will supply at least q-i _ points

which_ together with a given initial _ point and a current y point_ comprise

a history upon which it can build. The starting procedure used here is the

Runge-Kutta-Shanks procedure START, described elsewhere in this report. The

n1_Jnber of function evaluations per step and the order of Runge-Kutta-Shanks

method used by START may be varied at will by the user through the formal

parameters of ADAMS. This will achieve optimum compatibility with the order

of Adams method being used for each given set of differential equations being

s olved.

Initial step size is determined by the formal parameter DX. The

initial trial start will be made with a step H = INTERVAL / CI, where CI is

set to the smallest integer power of two such that IH] _ IDXI and

IHI<-IiNTERVALI/Q. This causes the prodecure ADAMS to take at least one step

after starting regardless of the magnitude of DX. If the procedure START

cannot meet the error requirements at the initial H, it doubles CI repeatedly

until these requirements can be met.

2.5 Error Estimates and Step Size Control

To minimize running time without introducing errors intolerably

large, the error in each component of the final _ vector is controlled through

the use of the formal parameters E_ and _. E_ specifies the maximum allowable

absolute magnitude of the error in each component of 7, an_ ER specifies the

maximum allowable relative magnitude. These two error control vectors are

@

used in conjunction with the quantity GR = ll-Tq/Tq+ll, which is derived from

the bounds (1-4), and a parameter P, chosen from the interval [½,1] by

ii



empirical determination of the randomnessof the round-off error in a par-

ticular set of differential equations. (P = ½ corresponds to totally random

error and P = i corresponds to totally additive error.) In practice _q+l

has been used in GRinstead of yq to be conservative, because the quantity

being controlled is only an estimate of the true error.
____ (c) .(p)

The estimated error vector ERRORis defined to be 17 - Y I,

_(P) is the _ of (l-3a) _( _yq(V_+l)yq(O) and c) is • in (l-3b), with _f beingwhere

the first v for which every componentof

is less than the corresponding componentof either

ClP . 2Q+5 .
q,o

or • GR . ......
clP 2Q+5 q

• • h_, o

If any component of ERROR is larger than the corresponding components of both

and

_A GR

CI P

_CER • aR y( )
C1 P

then _ is replaced by the step size is halved, and q-1 new f points and

a new current y are _tained from the procedure START. If it is not necessary

to halve the step size, then y(C) becomes the new _. If every component of

ERROR is smaller for three consecutive steps than the corresponding components

of both

12



P . 2Q+5 . 2Q+5 y(C)

then if there are at least 2q-i back points in the F_ array and there are

at least two more steps of the current size necessary to reach XF, the step

size is doubled before the next trial step. If it is not necessary either

to halve or to double the step size_ X is increased by H and a new trial

step is made.

2.6 Finishin_ an Integration

The procedure ADAMS continues as described until XF is reached

unless repeated halvings and doublings of the step size bring the independent

variable to within a fraction of a single step of XF. When this occurs, the

fractional step is completed by the Runge-Kutta-Shanks procedure SHANKS,

described elsewhere in this report. The order of R unge-Kutta-Shanks method

and the number of function evaluations per step used here will be the same

for a given integration as those used by the procedure START.

3. Flow Diagram and Program Listing

Figure i is the flow diagram for the method of Adams, Bashforth

and Moulton. The program listing follows at the end of this section.

4. Results and Conclusions

For experimental and diagnostic reasons, the procedure ADAMS was

originally checked out with separate arrays for the dependent variable

vectors Y_I (initial values), _ (back values), and _F (final values), all

of which are now made equivalent to _ in the DEFINE statement. These arrays

may be removed from the define statement and declared to be local arrays,

global arrays, or formal parameters if any reason for doing so should arise.

If this is done Y should be removed from the formal parameter list.

13
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Figure i. Flow Diagram for the Adams Method.
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A user interested in an efficient production program and desiring to

eliminate the unnecessary moving of data resulting from the formerly separate

arrays_ as well as other easily discovered minor inefficiencies_ should find

the coordination of notation_ identifiers, and labels between the preceding

discussion and the following flow diagram and program listing sufficient to

guide him in the task. Further_ the coordination of the notation of this

report with that of [ 5 ] should enable him to investigate the theory of

the method of Adams with a minimum of effort expended on trivial translation.

The procedure ADAMS makes efficient use of B-5500 Algol under the re-

striction of generality with respect to order. However_ in situations

where only a few orders are needed_ the r_uning time can be decreased

considerably by duplicating certain sections of the program for each order,

using separate identifiers to replace much of the indexing and a switch to

select the proper section of programming for a given order. Little investi-

gation of the amount of saving achieved in this way has been done, and an

evaluation of the potential gain should be profitable. This investigation

might also include determination of the tradeoff between storage space and

r_ning time when a large number of orders is required.

Although the procedure ADAMS has now been tested on a wide range of

equations, orders, and required accuracies with the existing step size

controls_ little has been done to determine the increases in efficiency to

be obtained by varying the method of control and how the effects of such

variation may depend upon order and required accuracy. The indication is

that the existing controls produce considerably more accuracy than intended.

This is particularly true when high accuracy is required at higher orders_

where the penalty in running time is greatest and the largest variation in

16



step size has been observed. Repeated step size expansions and contractions

of as much as 1024 to 1 have occurred. Even a slight relaxation of the

requirements for expanding step size should produce dramatic decreases in

running time. Determination of a way to do this safely should prove highly

worthwhile. There is slight evidence that, while the error increases with

increases in the factor GR at lower orders as might be expected intuitively,

this effect apparently can reverse at higher orders. A study of this

phenomenon could conceivably provide information useful in improving the

efficiency of the step size controls.
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B. The Method of Stetter_ Gra_g; and Butcher

i. Description of the Method

Following is a discussion of a method for the numerical integration

of ordinary differential equations described by J. C. Butcher [12] in a paper

titled '_Modified Multistep Method for the Numerical Integration of Ordinary

Differential Equations" which appeared in the January_ 1965 issue of the

Journal of the Association for Computing Machinery. In this paper_ Butcher

presents a modification to the multistep process such that for k _ 7(_here k

= the number of steps) processes of order 2k + i are available.

A large number of possible multistep methods exist for the numerical

integration of the differential equation

d__y= xf(x,y), y(xo) = Yo"

Such methods are usually characterized by an integer k and a set of

constants @I' @2 ---_ @k' _o _ _i' ---' _k" A solution is first found for the

variable y at a set of points Xl, x2, ---, Xk_ I, (where x.m = Xo + ih) and

thereafter by the formula:

Yn = _lYn-i + @2Yn-2 + --- + @kYn-k

+ h(Bof n + [ifn_l + --- + 8kfn_k) (i-2)

for n = k; k + i_ --- where Yi = Y(Xi) and fi = f(xi_Yi)" Dahlquist [3]

has shown that if the parameters _ and B are chosen under a condition of

stability; the order of a method cannot exceed k + i (if,k is odd) or k + 2

(if k is even).

A modification to this process is presented by Butcher which consists

of the addition to the right-hand side of equation (i-2) of an extra term
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h 8 fn-e where 8 and _ are additional parameters to be chosen.

formula has the form:

The modified

Yn = °_lYn-i + °_2Yn-2 + --- + °_kYn-k

+ h (8_-e + _o_n+ _/n-1+ ---+ B_fn-k) (I-3)

A procedure for choosing the coefficients is presented by Butcher. The

simplest stable processes are for k = 1,2;3 with e = i/2 and for k = 4,5,

6 with e = i/3. A stable process also exists for k = 7 with e = 13/40.

The method for implementing the formulas is to estin_zte Yn-e and Yn

using appropriate predictor formulas_ then use these predicted values to

evaluate the right-hand side of equation (1-3). The forms of the predictor

formulas used are:

Yn-8 = AlYn-i + A2Yn-2 + --- + AkYn-k

+ h (BSn_I+ B2%_2 + ---+Bk%_k) (i-4)

Yn = alYn-i + a2Yn-2 + --- + akYn-k

+ h (b f-8 + b!fn-i + b2fn-2 + --- + bkfn-k) (1-5)

To use this process; Yn-8 is first estirmzted using equation (1-4). The value

of the function is then determined for yn_8, and these two results are used

in equation (1-5) to determine a value for Yn" The value of the function

is then determined for Yn and a final value is then estimated using equation

(i-3).
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2. The Computer Procedure

A single-precision ALGOL Procedure was written to implement the

integration procedure described above on the Burroughs B-5500 Computer. The

procedure was designed to be used with the driver program described else-

where in this report, but it is conceivable that it could be used with other

appropriate driver programs. The procedure was written to integrate a system

of differential equations each of which has the form:

dy f(x,y), Y(Xo) = Yodx =

Since the integration procedure described by Butcher is a multistep

process, it must at all times have a history of back points. The process

is, therefore, not self starting_ it must rely on some other process to

develop the first k steps. The starting procedure used in this implementa-

tion is a basic Runge-Kutta procedure as modified by E. B. Shanks and is

discussed in paragraph E of this chapter. The starting procedure is called

at the beginning of an integration and whenever it is necessary to reduce

the step-size.

The step-size control is based on the difference between a predictor

and a corrector_ the control allows for halving and doubling of the step-

size only. Equation (1-5) is used as the predictor (Ynp) and equation (1-3)

is considered to be the corrector (Ync) . An estimate of the magnitude of

the error in a step is given by the absolute value of the difference in

these two quantities. This is used in conjunction with a relative error term
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ER and an absolute error term EA in the following m_nner: if

i_n_-_cL>_ (3x ._X-XI_

and

_ DX ._EX

lY_p- Yncl > l(_R)(Ync)l (XF- XI

then the step is rejected and the starting procedure is entered with the

previous point and a step-size equal to half the old step-size. If

- Xi _ 22k + _

or

l n,
for three steps (without an intervening halving of the step-size) and if

there is sufficient history of back points, then the step is accepted and

the step-size is doubled. If neither the conditions for halving nor the

conditions for doubling are met_ then the step is accepted and the step-

size remains constant. St is important to note that the above criteria

must be satisfied for all corresponding components of the vector quantities

before the conditions are considered to be met.

The method of ending the integration procedure is to run until the

value of the independent variable plus the next step is either equal to or

greater than the given final value i.e.

X+ DX>- XF.
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If it is exactly equal, then the procedure takes one more step and quits.

If X + DX _XF, then a special ending procedure is called to take the

final step. This ending procedure is also a basic Runge-Kutta procedure

as modified by E. B. Shanks. It is discussed in paragraph D of this chapter.

The procedure call for the Butcher procedure must be as follows:

BUTCHER (N, XI, XF, K, EA, ER, DX, CON, FUNCTION, EX, RKC, START, SHANKS, YIV,

RKSNF, RKS'0DR) ;

N - the number of dependent variables

XI - the initial value of the independent variable

XF - the final value of the independent variable

K - the number of steps to be used in the Butcher method

EA - the acceptable absolute error vector contained in an array of

dimension N

ER - the acceptable relative error vector contained in an array of

dimension N

- the suggested initial step-size

- the array row containing the Butcher constants required for the order

of the method specified

FUNCTION - the name of the user's function evaluation procedure

EX - the error exponent

RKC - the array containing the Runge-Kutta constants

SHANKS- the name of the ending procedure

START- the name of the starting procedure

YIV - the initial values of the dependent variable; upon exiting the Butcher

procedure, this array will contain the final values of the dependent

variables

RKSNF- the number of function evaluations in the Runge-Kutta Shanks procedure

RKSODR - the order of the Runge-Kutta Shanks procedure

DX

CON
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3. Flow Diagram and Program Listin_

Figure 2 is the flow diagram for the method of Stetters Gragg_

and Butcher. A listing of' the program is given at the end of this section.

4. Results and Conclusions

The following remarks will be directed to the problem of step-

size control in the Butcher procedure. Although the method of step-size

control s as described previously_ was adequate for the purposes of this

project s it is felt that some improvement is desirable. The difficulty

observed was that in virtually all cases the accuracy achieved by the

procedure was one to two orders of magnitude greater than the accuracy

asked. For the third order Butcher process (k = i), the step-size control

method is completely unsatisfactory yielding long running times and accu-

racies as much as four times greater than those asked. The process in this

case is essentially a third-order Runge-Kutta process. The equation used

as a predictor in the step-size control scheme simply is not accurate enough

in this case; this results in relatively large differences between the

predictor and the corrector.

In order to improve the relation between the accuracy asked of the

procedure and the accuracy achieved_ it is desirable to study ways of

improving the step-size control of the Butcher procedure. Such an improve-

ment should also result in a faster running time for the method. One

possible way of improving the step-size control is to use some form of

two-step/one-step comparison. This could be accomplished in the Butcher

process by using a predictor and corrector of the same order where the

corrector uses alternate points of the history and a step-size twice as

large as that of the predictor. The use of twice the step-size has the

advantage of not requiring the recomputation of back points.

i
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The investigation of new methods of step-size control should be done

in double precision so that all of the orders of the Butcher process can

be investigated. If single precision were used_ only lowest orders of the

process could be adequately investigated. This would not give a complete

picture of the operation of the Butcher process.
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0006£000
0000£000
000_£000
0009£000
000_£000
000_000

000££000
000_£000
000I£000
0000£000
0006_000
0000_000
O00X_O00

00098000
00058000

000_000

000£_000

00088000
O00I_O00

0000_000
00061000
o00gIo00
O00ZIO00
00091000
000_t000
000_000

000£I000
000_000

000II000

O000tO00
00060000

00090000
O00ZO000

00090000
000_0000

000_0000

000£0000
000_0000

O00tO000

00000000

f£/g*lHO 3Sq35eO+IH0
_[l]Alk*[l'O]k

_IX-_X_AINI

_+(Mx9)_9_

_Nxg+gH

N3HI£=_ HOS=_ _OI=_ _I

00 N 711NNI d]lSI*I _03
f[NIO]3V_3_ AV_V 7V3_

fXQX_IXQX 7V3_
fgP_£P_p_£HH _3931NI

fAINI qV3U
f_gH_t9_9M_iHO 7V3_

fIHN U3931NI

(_31NfiO0 _3931NI
fOkO _3931NI

(I_SBNQ 738V7
U3931NI
8d 7V3U

(IH_7AO_ITA_INOIOI_INAO0

_1_II _

fHSINI3_I_VIS3B_I_IS 738V7

f[NIO]IA_OAHNS_dANNS_dIAHn$ /V_V ]V3_
f£TkO H3531NI

fH_IO_X30NI_7kO_r_I a3931NI

f_O_£V_V_IV_3dH31_AdH31_IS31,i,!)O_m_900_Bqoo_VTOO_BOO_VOO_IXO 7V3_
fSXO qV3U

(X'_OS 7V3_

f[N:O_9I:O]3_k /V_V 7V3_
NID3B

f[O]_3mV3_NO0 AVB_V 7V3_

(X3_XO_3X_IX 7V3B

fl_Vl$ 3HQQ3OO_d _3931NI

fSHNVHS_NOIIONA3 3_no3oo_a
fM_N _3531NI

_BOOS_3NSH_ B3931NI

f[O]hlk /V_V 7V3_
(_QO$_NSNa_X3_NOO_XO_.JX_IX_N 3_TVA

f(_OOSH_NSM_AIA

_$MNVHS(I_VIS¢ON_X3_NOIlONll_Nt)3_XQ_3_V3_3X_IX_N)H3HO,tnB _;IPO3OO_d

c%1
h'%



33



J3÷3xJ;
JSe6xJ;
COA*CON[J6];
COB÷COO[J3];
COLA*CON[J6+2];
COLB_COO[J3+t];
COGA_CON[J6+4];
CDGB_COOIJ3+2];
FOR I÷tSIEP 1UNTIL
BEGIN

,TEMPY&Y
TEMPF&F
SUMYIP[
SUMYP[I
SUMYC[I

N DO

[CYL3_I];

[CYL3JI];
I]_SUMYIP[I]+(COAxTEMPY)+(COBxTEMPF);

]_SUMYP[I]+(COLAXTEMPY)+(CDLBXTEMPF);

]_SUMYC[I]+CCOGAxTEMPY)+(CDGBxTEMPF);

END;

END;

FUNCTION(N,XDXTpSUMYIP_FVl);

FOR I_ISTEP IUNTIL N DO

BEGIN

TENPF*FVI[I];
SUMYP[I]+SUMYP[I]+(AtxTEMPF)I

SUMYC[I]_SUMYC[I]+(A2xTEMPF);

END;

FUNCTION(N_XDX_SUMYP,FVI);

CYL*(CYL+I)MOD 16;

CYOI(CYL+KMI)MDD 16;

COUNT_O;

FOR I_ISTEP IUNTIL N DD

BEGIN
TEMPY_SUMYC[I]*(A3xFVI[I]);

TI_AE[I];
T2_ABS(RE[I]xTEMPY);

TEST_ABS(TEMPY'SUMYP[I]);

IF TEST>TI AND TEST>T2 THEN

BEGIN

C2_C2+C2;
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C. The Cowell Method

i. Description'of the Method

Cowell's method as described herein is a multistep predictor-corrector

method for the numerical solution of the first-order vector differential

equation

' (x) =dxdRx) = (x,Rx)), o) = (1-1)

A complete derivation and description of Cowell's method can be found

in [ 9 ] and [ 18 ]; only the essential formulas are included here.

The following notation is adopted. Let q be an even positive integer,

m = q/2, h be the step size (assumed to be constant over some set of calculations),

..... _n)x = x0 + nh, Yn = y (Xn)' and f = f (Xn, •n n

The predictor formula is

q

_n = h [6-1 fn-½ + j=O_ Pj <_l_j] , (1-2)

The corrector formula is

_____>

[8-i +
Yn = h fn-½

q

Z c _n_j] (1-3)
j=O J

and the mid-range formula is

q

_n = h [8 -1 fn-½ + j--07'M.$ _n+m-j] (1-4)

The predictor formula gives _n in terms of 6-1fn_ _ and the function values

37



at the previous q+l points; the corrector formula gives a new value of Yn in

terms of
n-½' the old value of _n' and the function values at the previous

q points; the mid-range formula gives a value of _n in terms of 6-1fn_ ½ and

the function values at the q+l consecutive points centered around x .
n

The equation

6-1fn-½ = 6-1fn-l-½ + _n-i (1-5)

completes the set of formulas necessary for the numerical solution of (l-l).

If it is assumed that

L iJi=O

have been obtained by some starting procedure_ the mi_-rauge formula (1-4)

can be applied with n=m to obtain

&-lfm_½ .

Equation (1-5) can then be applied m times to obtain

For each positive integer i-

fq+i-½

can be computed from

6 f i
q+i-l-z
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fq+i-i using (1-5); _q+i can be computedusing the predictor (1-2);and

-4 .__

fq+i can be computed from the predicted value; Yq+i can be computed using .the

corrector (1-3); fq+i can be computed from the corrected value; if necessary_

iteration can be resorted to, using (i-3), until the last two computed values

..)

of Yq+i agree to sufficient accuracy. For any j > m a value of Yq+j-m can be

obtained from the mid-range formula (1-4) and compared with the value obtained

from the predictor-corrector step. If the two values of _a+J-m are in sufficient

agreement, the values up through yq+j are considered acceptable; if not, _q+j-m

is considered the last acceptable value and all values beyond are rejected.

Hence, the knowledge of (1-2), (1-3), (1-4), and (1-5) is sufficient to

apply Cowell's method in the numerical solution of (i-I). The coefficients

iPj and are given in [ 18 ] forj=o

q=4, 6, 8, i0, 12, 14, and 16.

2. The Computer Program

The Cowell computer program is a Burroughs B-5500 ALGOL single-

precision procedure whose declaration is as follows:

procedure Cowell (m, xi, xf,. y, f, ca, er, p, dx, rksfn,

rksorder, rkscoeff, q, cowelicoeff, start, shanks);

value n, xi, xf, p, dx, rksfn, rksorder, q;

integer n, rksfn, rksorder, q;

real xi, xf, p, dx;

real array y, ca, er, rkscoeff, cowe!icoeff [0];

procedure f, shanks;

integer procedure start;

The parameters of the procedure are defined as follows:
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- the number of dependent variables in the vectors y and f

xi - Xo, the starting value of the independent variable x

xf - the final value of the independent variable x

- the array in which Yo = _ (xi) is located upon entry and in which

y (xf__)is located upon exit

° the procedure which computes _ = _ (x, _)

e__a- the array containing the absolute error vector

e__r- the array containing the relative error vector

- the exponent used in step size control

rksfn - the number of function evaluations used in the Runge-Kutta-Shanks

starting and closing procedures

rksorder - the order of the Runge-Kutta-Shanks closing .procedure

rkscoeff - the array containing the Runge-Kutta-Shanks coefficients

for the starting and closing procedures.

- the even integer used in describing Cowell's method

cowellcoeff the array containing the Cowell coefficients

start - the starting procedure

s_hanks - the closing procedure.

The procedure performs the numerical integration of (i-i) from x = xi

to x = xf. The step size h used is always the length of the interval xf - xi

divided by a power of 2 in order to avoid error building in the independent

variable two counters, c__land c2 are kept. c__lis always a positive, integral

power of 2, and h = (xf - xi)/c__l, c2 is the number of steps necessary to step

from the present x to xf using the current step size h. Initially c2 = cl;

as each step is taken c2 is decremented by one and the present'value of x is
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computedby x = xf - h c2. If h is halved, cl and c2 are doubled; if h is

doubled, cl and c2 are halved. Hencec2 need not be integral.

The error vectors ea and er, like y, have n components. (Although the

base of the arrays y, ea, and e__ris zero, the n componentsare placed in

positions i, 2, ..., n of the arrays.) The procedure's error control

attempts to guarantee that, in integrating from xi to xf, each component

of y will not be in absolute error more than the corresponding componentof

ea and will not be in relative error more than the corresponding componentof

er. At each step, the procedure requires that for each i, l_i_n_ either the

absolute error in y [i] does not exceed ea _]/(cl p) or the relative error in

y [i] does not exceed er [i]/(clP).

If p = i and er = 0 then the accumulated error in any componentof

cannot exceed the corresponding componentof _a. If the error is assumedto

accumulate randomly as the square root of the numberof steps, p = ½ and

e_ = 0 will cause the accumulated error in any componentof j to be

approximately the corresponding componentof ea.

If p = i and ea = 0 then the accumulated error in any componentof

cannot exceed the corresponding componentof er times the largest value

assumedby that componentof _ during the integration. If the error is

assumedto accumulate randomly as the square root of the number of steps,

½ _p = and ea = 0 will cause the accumulated error in any componentof y to be

approximately the corresponding componentof er times someaverage value

assumedby that componentof _ during the integration.

The procedure _ which computes _ = _ (x,y) has the following declaration:
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procedure f(n, x, yv, fv);

value n;

integer n;

real x;

real array yv, fv EO_;

The parameters of the procedure f are defined as follows:

n - the number of dependent variables in the vectors _ and f
m

x - the value of the independent variable

yv - the array in which y is stored

fv - the array in which f is stored after computation

The procedure start is the general multistep method starting procedure

described in paragraph E of this chapter. The procedure shanks is the Runge-

Kutta-Shanks integration procedure described in paragraph D of this chapter.

The coefficient array rkscoeff contains the Runge-Kutta-Shanks coefficients in

the order required by the procedures start and shanks. The number of function

evaluations rksfn is required by both start and shanks_ the order rksorder is

required by shanks.

The array cowellcoeff contains the coefficients of (1-2)_ (1-3), and

(1-4) in the order PO _ PI' "' Pq, CO, Ci, ._ Cq, _, M I, ._ Mq;

PO is in the zero position of the array.

The suggested initial step size d__xxis optional. The procedure first

sets C__I= 2 and doubles c__luntil c__ll-_q. If dx = 0 or dx _ 0 and

h _ Idxl then c__lis left alone.

The integration now begins.

Otherwise, c__lis doubled until h _ Idxl.

fo = Y(x0' 0)
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is computed. The start procedure is called to obtain

q Ym' and x .i i=! ' q

cl and c2 are adjusted if h was changed by the start procedure.

decrementedby q since q steps took place in the start procedure.

closing takes place. Otherwise,

-->

8-1fro½

c2 is

If c2 < m,

is calculated from

and _m using the mid-range formula (1-4).

6-1f
q!

--2"

m applications of (1-5) yield

and n is set equal to q.

For i < i < m the following set of steps takes place.

by i_ and xn+i
is calculated.

6-1fn+i_½

c2 is decremented

is calculated from

6 f 1

n+i-l-_

and _n+i-i using (1-5). Yn+i is calculated using the predictor (1-2), and
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..)

fi+i is calculated. Yn+i is next calculated using the corrector (i-3)_ and

fi+i is again calculated. Let v be the vector which is the absolute value of

the difference between the last two calculated values of _n+i" Each component of

v is compared with the corresponding component of e_/(lO • cl p) for absolute

error and with the product of the corresponding components of _r/ (lO cl p)

and the last calculated value of _n+i for relative error. If any component

.-+

of v exceeds in both the absolute and the relative error tests, the steps

which calculate Yn+i using the corrector (1-3), calculate fn+i from the

value of _n+i' and which test the last two calculated values of Yn+i are

..+

repeated. When each component of v does not exceed in either the absolute or

the relative error test_ the last values of _n+i and _n+i are retained.

The mid-range formula (1-4) is now used to calculate a new value of

_nfrOm

 n÷i)m.
l=-m

L

_!T."

_,'9'

!\

i

[:

and

6-if
n-½"

Let _ be the vector which is the absolute value of the differences between the

new value of _n and the previously calculated value of Yn" If sufficient

history is available for doubling the step size, i.e., n > q + m, each

component of _ is compared with the corresponding component of

_a/(lO clp 2q+3) for absolute error and with the product of the

corresponding components of Jr/(lO . cl p 2q+3) and the new value of _n for

relative error.
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If each component of _ does not exceed in either the absolute or the

relative error tests, the last m steps are accepted_ cl and c2 are halved,

and the step size is doubled. If c2 < m, closing takes place• Otherwise

fi i=O

becomes

_'-' _ qIfn-m+2i i=O ;

Ym becomes -m' becomes Yn+m' x becomes x and, as if the startingq n+m'

procedure had calculated these values, control returns to the step where

is calculated using the mid-range formula (1-4).

If any component of v exceeds in both the absolute and the relative

error tests, this component and each untested component is compared with the

corresponding component of _a/(lO . clp) for absolute error and with the

product of the corresponding componen_of _r/(lO . cl p) and the new value of

Yn for relative error. If each component of _ does not exceed in either the

absolute or the relative error test, the last m steps are accepted and the

step size remains unchanged. If c2 < m, closing takes place. Otherwise,

n becomes n + m and control returns to the steps which calculate

m

If any component of v exceeds in both the absolute and the relative error tests,
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the last m steps are rejected, c2 is incremented by m, cl and c2 are doubled,

and the step size is halved, becomes fn' becomes Yn' x0 becomes Xn, and

control is returned to the step which calls the start procedure.

If sufficient history is not available for doubling, control transfers

as if the first component of _ exceeded both the first component of

_a/(10 . cl p . 2q+3) and the product of the first components of

e_/(10 . cl p . 2q+3) with the first component of the new value of _n"

Closing takes place whenever m steps at the present step size would carry

the integration beyond xf, i.e., whenever c2 < m. If c2 > 0, the Runge-

Kutta-Shanks procedure is used to integrate from the present value of x to xf;

if c2 = 0, the present value of x is xf. In either case, the integration is

now complete.

Several efficiency measures are employed in the program. First, the

coefficients

and

are multiplied by the step size h and stored as multiplied until the step size

changes. Second, the vectors ea/(lO clP), er/(lO clP),

ea/(lO cl p 2q+3), and _r/(lO clp . 2 q+3) are calculated from e_a and er

and stored as calculated until the step size changes. Third, the corrector
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partial sum

----> q
hS-if i + h _ C.f.

n-_ j=l J J

is computed and stored at each step; successive applications of the corrector

only require adding h • CO fn to obtain Yn" Fourth, during applications of

the corrector, two arrays are used to store the last two calculated values of

_n; a flag is used to mark the last calculated value so that the next value is

placed in the unflagged array and the flag is switched. This avoids transfer

from array to array as successive corrector iterates are computed. Fifth_

cyclic indexing is used to avoid moving the function value history after each

step or set of steps unless doubling takes place.

One unusual condition can result. If_ during any step taken in computing

the number of times through the corrector exceeds eight, control transfers as

if the set of m steps has been completed and rejected, i.e., a step size

halving was called for with a restart beginning at _n"

3. Flow Diagram and Program Listing

Figure 3 is the flow diagram for the Cowell method. The program

listing follows at the end of this section.

4. Results and Conclusions

The first important conclusion concerns the error control. The

specified tolerances for absolute and relative error are h'andled vectorially

to allow for systems in which the units of the various dependent variables are

not the same. Such systems arise in physics_ for example_ from reduction of

second order equations of motion in two dimensions to a first order system in
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which two variables are positions and two variables are velocities. More

important, however, is the requirement at each step that the error in each

variable not exceed the specified tolerances divided by clp, where

0 _ p J i. If p = O, conventional vectorial error control results. If

p _ O, however, an interesting phenomenon occurs. As the step size decreases,

higher accuracy is required; as the step size increases, less accuracy is

required. Hence, halving is Often required sooner after a previous halving

than when p = O, and halving immediately after doubling is less frequent

since the increase in error due to doubling is accompanied by a decrease in

accuracy required.

One major result of this error control is the linearity of error obtained

as a function of error asked. Earlier experiments [i_ with p = 0 showed

that dividing the asked error by ten sometimes had little or no effect on

the error obtained; dividing the error asked by two sometimes decreased the

error obtained by a factor of ten. Present experiments with p = ½ show that

multiplication of the error asked by a constant usually causes the error

obtained to be multiplied by the same constant.

Division of the asked error tolerances by i0 clp rather than cl p was

determined experimentally to be necessary in order to assure that the error

at each step be held to its desired value. This seems to be a peculiarity of

the mid-range formula type of error estimation; namel_ that the actual error

after each set of m steps can be as much as ten times as large as the estimate

given by the mid-range test.

Doubling occurs when'the estimated error is less than the asked error

tolerances divided by i0 clp 2q+3; hence, the doubling criteria are the

accepting criteria divided by 2q+3. This factor was also chosen experimentally,
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and it is the same factor that was determined in earlier experiments with

p=o

One other consequence of the present error control is the limitation of

accuracy obtainable with a single precision program. When the relative

estimated error is required to be less than i0 "II for doubling to occur,

doubling is almost precluded since the computer can only carry eleven to

twelve decimal digits. Under such conditions the number of steps increases

enormously, and the program is virtually useless. For p = 0 and variables of

order of magnitude one, this situation occurs when the error asked divided by

i0 . 2 q+3 is about i0-ii; however, with p _ O, this situation occurs when the

step size is such that the error asked divided by i0 clp 2q+3 is about

i0 -II. Thus the smallest allowable asked error is reduced as p approaches one.

Since the even integer q is also involved in the calculation of the

smallest allowable asked error, it becomes apparent that the smallest allowable

asked error can be asked with small q, yet the larger values of q offer their

biggest advantage at higher asked accuracies. Results show that best single

precision results tend to come from runs with q = 4 and q = 6 at the asked

accuracies which are reasonable for single precision; earlier experiments with

double precision asking higher accuracies [i_ showed that best results came from

higher values of q.

The matching of the order of the start procedure with the order of the

Cowell method was somewhat difficult due to the limitation on accuracy asked.

The (4,4) Shanks formula seemed to give best results for q = 4, at all

accuracies and best results for q = 6 at larger asked errors; the (5,5) Shanks

formula seemed to give best results for q = 6 at smaller or asked error. These

results were not extensive enough to be conclusive, however.
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Corrector convergence can become a problem under two conditions. First,

the Runge-Kutta-Shanks formulas can take much larger steps than the Cowell

method at lower asked accuracies. The step size chosen by the start procedure

can be large enough so that the Cowell corrector will not converge, yet the

steps are accurate enough as Runge-Kutta-Shanks steps. Second, in rapidly

approaching a singularity the step size could suddenly become too large for

Cowell corrector convergence, for step size control is only exercised after

each m steps. The corrector counter was required to protect against the

corrector not converging_ a halving is called for whenever more than eight

times through the corrector become necessary.

A final result concerns second order systems. Cowell's method was

originally a pair of predictor and corrector formulas to be used to compute

the positions as well as the velocities directly from the function value

history. The predictor and corrector to compute the positions was of one

higher order than the corresponding velocity formulas. Earlier experiments _

were made using this type of approach. Present experiments required the

second order system to be reduced to a first order system; the predictor and

corrector are simply the velocity formulas. Both earlier and present

experiments show the positions to be more accurate than the velocities; hence

only time, not accuracy, is lost when a second order system must be solved

as a first order system.
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TQPI,lpP,RKSFN,RKSCOEFF})xC1
C2 :=C2 Xll "Q
_NDX :=([NDX _O}MOD TOP1 ;
IF C2 <M T_!EN GO TO CLOSER
DOUBLER_H :=INT /C1
FOR K 8=0 STEP 1 UNTIL Q DO
BEGIN

PCOEFF[K]:=COWELLCOEFF[K]xH ;
CCDEFF[K]I=COWELLCOEFF[It :=K +QPt]xH
H_OEFF[K]8=COWELLCOEFFEIt ÷OP1]XH

END ;
T1 :=(C1 *P)XlOoO ;

FOR J :=1 STEP I UNTIL N DO

BEGIN

EAVD[J]t=(EAV[J]:=EA[J]/TI)/DFACTOR ;

ERVD[J]:=(ERV[J]:mER[J]/TI)/DFACTOR
END ;

T1 :=HCDEFF[O]3

FOR J :=I STEP I UNTIL N DO HDMIF[J]:=YMIDI[J]°FH[INDX_J]xTt ;

CYI :=INDX +TQP! ;
I3 :=CYI -QPI ;

FOR K :=I STEP I UNTIL M DO

BEGIN

II :=(CYI "K)MOD TQPt

12 :=(13 +K)MOD TQPI

T1 :=MCOEFF[K]-H ;
T2 :=MCDEFF[QP1 -K]_
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xT2

END ;

FOR J :=I STEP I UNTIL N DO HDMIFMID[J]:=HDMIF[J];

DFLAG :=FALSE ;

ACCEPTIFOR I :=I STEP I UNTIL _ DO

BEGIN

CYI :=(INDX :=(TNDX _I)MOD TQPI)+TQPI ;

X :=XF -(C2 -I)xH ;

II :=(CYI "I)MDD TQPt ;
TI :=PCOEFF[O];
T2 :=CCOEFF[1];
FOR J :=t STEP I UNTIL N DO
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C)

BEGIN

IF T2 >ERVD[J]xABS(T3)THEN
BEGIN

IF T2 >EAVtJ]THEN
BEGIN

IF 72 >ERV[J]XABSCT3)THEN GO TO La

END J

GO TO L3

END

END
C2 t=C2 "M J

C2 t=C2 /2.0
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IF PFLAG THEN FOR J t=1 STEP I UNTIL N DO Y[J]I=YP{J]ELSEFOR J ==1 00172000
STEP 1 UNTIL N DO Y[J]t=YC[J]J
C1 l=Ct DIV 2
IF C2 <M THEN GO TO CLOSER
INDX 8=INDX +1
FOR K l=1 STEP 1 UNTIL Q DO
BEGIN

INDX t=(INDX +t)MOD TQPI J

I1 t=(INDX +K)MOD TQP1 3
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ENDJ
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END J
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BEGIN
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D. The Runge-Kutta-Shanks Method

i. Introduction

The procedure described is a generalization of the Runge-Kutta

method for solving a system of differential equations. It may be applied

to an arbitrary system of first-order differential equations of the form

with the initial conditions

where y (x) =

Y (Xo) = Yo

(yl (1:(x) _'(x)= y'(x)

Yn"(x)! Y_(_)/

fn (x'YT' -, Yn ) \YnO

2. Description of the Method

The Shanks Method is a single-step procedure for finding a numerical

solution of a first-order ordinary differential equation or system of

differential equations in which the derivatives of the dependent variables

may be expressed explicitly as functions of the independent and dependent

variables.

Consider the system of differential equation

y = f (x,
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Suppose the value of y (x) is known. The value _ (x + h) is approximated by

m

y (x+ h): y (_)+ h Z _ifi(_,h,o.,
i=l

where

- . }(7)fl (x,h,y) = x, ,

i-i

}. (x,h,_): _ (x+ _h, F + h Z
z z j=l

8ijYj), i : 2, , m.

The coefficients _. (i = 2,
1

., m)

8ij (i = 2,
•, m; j =i, ., i-l), and Yi(i = i, ., m)

are chosen so as to make the approximation correct to some order. A special

case of the Shanks formula is the fourth-order Runge_Kutta formula:

a'2 = 1/2, at3 : 1/2, o_4 = 1,

621=- 1/2, 631 = O, 832 = 1/2, _41 = B42 = O, _43 = 1,

'Yt : 1/6, 72 = 1/3, Y3 = 1/3, Y4 = 1/6.

For useful values of the various combinations of _, 6, and _, see Shanks [17].

3. The Computer Procedure

The procedure was programmed for the B-5500 computer in the B-5500

Algol language. Single precision arithmetic (ii to 12 decimal digits) was

used.

3.! Error Estimates and Ste_ Size Control

In this procedure a single set of Shanks formulas is used. Suppose
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a vector y (x) is known. Then the Shanks method is applied to one ste p of

_x
size h(where h = --_ Ax is the length of the interval, and c is a power of

C

h
two), and to two steps of size _-, as follows:

m

y(x) +hZ x,h, ,
i=l

m
_ h _ h _

Ym = y (x) + g .Z yi_(x,g,y)
l=l

m

= _ _i x+g,g, .Yc Ym + 2- i 1

Both _p and _c are estimates of _(x+h) .
f

(where f is an empirical factor) is calculated for each independent variable

Yk" If both Ek > Ea___kand Ek > ErklYcki for any dependent variable

c p c p

where Eak is an absolute error est_nate, Erk is a relative error est2mate,

and p is an input parameter, usually i or 1/2, then the step is rejected

and the step size is halved; otherwise the step is accepted and _c is taken

as the vector y(x+h). If for every dependent variable, either E k > Eak

E k > ErklYckl, where j is the order, "then the step size is doubled.2(J+3)cPlfthe

2 (j+3) cp

step size h is larger than the distance to the end of the interval, then that

An error estimate Ek =lYck - Ypkl

or

distance is taken as the step size.

3.2 Input and Output of the Procedure

The procedure is called as follows:

SHANKS (N,Xi,XF,YV, F,M, ORDER, CF, P,EA,ER,DX) ;

where the parameters have the following meaning:

N - number of dependent variables;

XI - initial value of the independent variable;

XF - final value of the independent variable;
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YV - array of initial values of the dependent variables, based at zero

but with the zero element not used;

F - a function evaluation procedure, supplied by the user, called as follows

F(N, X,YV,FV) ;

where N is the number of dependent variables, X is the value of the

independent variable, YV is the array of values of the dependent

variables, and FV is the array in which the function values are placed;

M - the number of function evaluations in each application of the Shanks

method;

ORDER - the order of the Shanks formulas used;

CF - the array of Shanks coefficients, starting in the zero element arranged

as follows: for each i, the corresponding _i_ij's, followed by _i _

with the Ni's at the end;

p - an exponent (usually 1/2 or I) used in step size control (! assuming

the errors are additive; 1/2 assuming that they are random);

EA - an array of absolute error asked;

ER - an array of relative error asked;

DX - a recommended starting step size (the actual starting step size will be

XF- XI, where c is the smallest power of 2 for which IXF - XII -< IDXI).C

C

The final values of the dependent variable are stored in YV before exiting

the procedure.

4. Flow Diagram and Program Listing

Figure 4 is the flow diagram for the Runge-Kutta-Shanks procedure.

A listing of the program is given at the end of this section.

5. Results and Conclusions

T_ris procedure was used with systems of differential equations with

i..::
ii::_i!
ii:_!

i/i¸

i511

i:)

_7

i"

i
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\ / f Ituu.,._.I _..... ) I ERANGE_I/2* (ORDER+3)

DXD * (XF-XI)/COUNT COUNT _- COUNT+COUNT

COEFFICIENTS

YV * YCOCOUNT ,. OCOUNT-I

ES_.I YC[K] - YP[K]I I[,,

YES
COUNT ,-COUNT/2

OCOUNT _ DCOUNT/2
DXH + OXD

OXD ,- {XF - XI}/COUNT

X *- (COUNT - OCOUNT)

C_DXD + XI

_'_ . COUNT e COUNT+COUNT J _ I ...... RRAY I _'_
YES __] YES _l DCOUNT _ DCOUNT OCOUIT

n + ' I .J YP ÷ YI4 I_ OF_STEP l ..-ITO

F° F l'°

COUNT _ OCOUNT ÷ I

XI _- X
DXD _ XF -X

DXH ÷ DXD/2

H ,,_sETA'_A',I r'<-..
OF STEP _ TO _.

SXZE® _ Ll /"
COEFF[C'ENTSI

ESETA_YI_
OF STEP l .J TO

SIZE® _ 4.1 /

COEFF_C[ENTSll L_

Figure 4. Flow Diagram for the Runge-Kutta-Shanks Procedure.



analytic solutions, as well as with the three-body problem. It gave slightly

more accuracy than was asked.

In order to reach the end of the interval more accurately_ the steps

taken were binary fractions of the total interval. Hence, it was necessary

to use halving and doubling rather than the continuous step size control of

previous experiments [ l_. Although this caused the rejection of more steps,

it prevented roundoff in the independent variable.

The procedure was first run without the empirical factor f (i.e., with

f = i) mentioned in 3.1. The results were more accurate than asked.

The theoretical value, f - i , was then used. It was found that
2 °rder-I

for some formulas (in particular, 8-10 and 8-12), the desired accuracy was

not reached.

i In this

Finally, runs were made with a compromise value, f = 2order_l

case, the results were good for most formulas, but the Shanks 8-10 formulas

still sometimes did not obtain the desired ac.curacy.

It might be noted that the most accurate results were usually obtained

with the Shanks 4-4 formulas.

It is recommended that further experimentation be done in the area of

step-size control with the Runge-Kutta-Shanks method. In particular, other

values for the factor f might be used. It might be desirable to determine

a particular constant for each set of formulas.

?

)/.

4;

i"

!.

i'-

i

!

i:

L_

!.
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0

NCF+NCFI÷I_
CFSW+FALSE;
FOR I+OSTEP 1UNTIL NCF1
BEGIN

CFD[I]+CF[I]xDXD_
CFH[I+NCF]÷CF[I]xDXH_

DO

END;
X&XI;

XM+_I+OXH;

LIIDSH+TRUE;
F(N_X,YV_GV);

IF CFSH THEN L_NCFI ELSE L+'I_

FOR I÷ISTEP IUNTIL M DO

BEGIN
II+I'1l
L+L+I;
BETA&CFD[L];
FOR K_ISTEP 1UNTIL N DO YP[K]_GVtK]xBETA+YV[K];
FOR J+ISTEP 1UNTIL II DO
BEGIN

L_L+I;

8ETA+CFD[L];

FOR K+JSTEP tUNTIL N DO YP[K]+FV[JpKJxBETA+YP[K]_

END;
L_L+I;
F(N,CFO[L]+X_YPpFV[Ip_])_

END;
L&L+I;
GAMMA+CFD[L];
FOR K_tSTEP tUNTIL N DO YPCK]+GV[K]xGAMMA+YV[K]_
FOR I÷ISTEP 1UNTIL H DO
BEGIN

L_L+I_

GAMMA+CFO[L]_
FOR K+ISTEP 1UNTIL N DO YP_K]_FV[IpK]xGAMHA+YP[K];

END_
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00041000
000_2000
00043000
0004_000
000_5000
000_6000
000_7000
000_8000
000_9000
00050000
0005100b
00052000
00053000
0005_000

00055000
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00061000
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00066000
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0007_000
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--,l
I--'

L2slF
FOR I

BEGIN

II_

L&L
BET

FOR

FOR

BEG

L

CFSW THEN L_-I;

• ISTEP IUNTIL M

I'I;

+I;
A_CFH[L];

K_ISTEP 1UNTIL

J÷ISTEP 1UNTIL

IN

_L+IJ

BETA÷CFH[L];
FOR K_ISTEP tUNTIL

DO

N DO YM[K]&GV[K]xBETA+YV[K];

II 00

N 00 YM[K]&FV[JpK]xBETA+YH[K];

END_
L&L+I;
F(NpCFH[L]+X,YMJFV[I,,]);

END;
L*L+tl
GAMMAeCFH[L];
FOR K&ISTEP 1UNTIL N
FOR I_ISTEP 1UNTIL M
BEGIN

L&L+I;
GAHMA&CFH[L];
FOR K&ISTEP 1UNTIL

DO YM[K]&GV[K]xGAMMA+YV[K]I
DO

N DO YM[K]&FV[I,K]xGAMMA+YM[K];

ND;

(N,XH_YM,FV[O,*]);

F CFSW THEN L+'IELSE L_NCFI;

OR I*ISTEP IUNTIL M DO

EGIN

II*I-1;

FDR K_ISTEP IUNTIL N DO YC[K]_YM[K];

FDR J_OSTEP IUNTIL II DO

BEGIN

L_L+I;

BETA_CFH[L];
FOR K&ISTEP 1UNTIL N DO YCEK]&FV[J,K]xBETA+YC[K];
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r,J

END;

L÷L+I;
F(NpCFH[L]+XM_YCeFV[I_*])J

END;
FOR K_ISTEP 1UNTIL N DO YC_K]_YMtK]_

FOR I_OSTEP IUNTIL M DO

BEGIN

L_L+t_
GAMMA_CFH[L];
FbR K_ISTEP 1UNTIL N DO YC[K]_FV[IpK]xGAMMA+YC[K];

END;

FOR K_ISTEP IUNTIL N DO

BEGIN

ES_ABS(YC[K]-YP{K])xEFACTOR;

IF ES#OTHEN
BEGIN

IF ES_EA[K]THEN IF ES_ABS(YC[K])xERtK]THEN

BEGIN

DSW_FALSE_
STEPR_STEPR+I;
COUNT_COUNT2J
COUNT2_COUNT+CDUNTI
_CUUNT+DCOUNT+DCOUNT;
DXD_DXH;
DXH÷DXTtCOUNT2;
EFACTDR÷CDUNT*PxEFACT;
IF CFSW THEN
BEGIN

FOR I+OSTEP 1UNTIL NCF1 DO CFH[I÷NCF]_CF[I]xDXH;
CFSW÷FALSE;

END ELSE

BEGIN

FOR I_OSTEP

CFSW+TRUE;

IUNTIL NCFI DO CFH[I]&CF[I] XDXH;

END;
XM÷(COUNT2_I-DCOUNT'DCDUNT)XDXH_XI _
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IF DSW THEN
BEGIN

DKTR+DKTR+tJ
COUNT2+COUNT;
COUNT+COUNT DIV 2;
DCOUNT+DCOUNT/2;
DXH÷DXD;
DXD+DXT/COUNT;
EFACTOR+COUNT_PxEFACT@
IF CFSW THEN
BEGIN

FOR I+OSTEP tUNTILNCF1
CFSW+FALSE;

00 CFD[I]+CF[I]xDXD@

END ELSE
BEGIN

FOR I÷OSTEP
CFSW+TRUE/

tUNTIL NCFI DO CFD[I+NCF]+CF[I)xDXD3

END;

END;
XM+(COUNT2+I-DCOUNT-DCOUNT)XDXH+XI@
GO TO L1;
EXITI

END;
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F.. The General Multistep Method Starting Procedure

i. Introduction

The general multistep method starting procedure is a B-5500 ALGOL

single-precision Runge-Kutta-Shanks procedure used for obtaining starting

values for the Adams_ Butcher, and Cowell multistep methods. The declaration

is as follows:

integer procedure start (m_ xi, xf_ cl, ea_ er_ f, m, x_ yiv_

yh, fh_ yfv_ cyi_ cym, pa_ p,

fneval, rksconst) ;

value n_ xi_ xf_ cl_ m_ cyi, cym_ per, p_ fneval;

integer n_ cl_ m, cyi, cym, pa, fneval

real xi, xf_ x, p;

real array ea, er, yiv, yfv, rksconst [0], yh, fh [0,0];

procedure f;

2 ° Description of the Procedure

The parameters of the procedure are defined as follows:

n - the number of dependent variables
m

xi - the starting value of the independent variable x passed to the

multistep method

xf - the final value of the independent variable x passed to the

multistep method

cl - the integer counter (xf - x i)/h from the multistep method

ea - the absolute error vector passed to the multistep method

er - the relative error vector passed to the multistep method

f - the procedure which computes _(x,y) = _ty

m - the number of history points to be calculated by start
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x - the value of the independent variable at which start begins its

integration

yiv - the array which contains on entry for Adams and Cowell the values

of the dependent variables at x and which contains on exit for Cowell the

values of the dependent variable at the mth point calculated by stert

yh - the array which contains on entry for Butcher in row cyi the values

of the dependent variables at x and which contains on exit for Butcher the

values of the dependent variables at each of the m points calculated by

start

fh - the array which contains on entry in row cyi the function values at

x and which contains on exit the function values at each of the m points

calculated by start

yf___v- the array which contains on exit the values of the dependent variables

at the mth point calculated by start for Adams or the m/2th point calculated

by start for Cowell

cyi - the cyclic index identifying on entry the row of yh in which the

values of the dependent variables at x are stored for Butcher and the row of

fh in which the function values at x are stored for any method

cym - the number of rows in the arrays yh and fh

p__aa- the parameter which is zero for Adams, one for Cowell, two for Butcher

p - the exponent such that the absolute error at each step is not to

exceed ea/cl _ and the relative error at each step is not to exceed er/cl _

fneval - the number of function evaluations required by the Runge-Kutta-

Shanks procedure

''AH

k

i/

i___
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rksconst - the array which contains the Runge-Kutta-Shanks coefficients in

the same order as required by the procedure shanks described in section D.

The value of start on exit is two to the power of the number of halvings

which took place within start.

Although the base of the arrays ea, er, yiv, and yf__zvand of the rows of yh

and fh is zero, the n components are placed in position i, 2, ..., n and the

zero position is unused.

The procedure attempts to calculate m (if m is even and positive) or

m + i (if m is odd) Runge-Kutta-Shanks steps of size h = (xf - xi)/cl. After

each even step of size h is taken, one step of size 2h is taken over the

interval spanned by the two steps of size h. The absolute value of the

differences in each dependent variable be bween the 2h-step and the second h-step

is compared with the corresponding component of _a/(cl/2) p for absolute error

and with the product of the corresponding component of e_/(cl/2) p and the

corresponding dependent variable value from the second h-step for relative

error. If each component of the difference does not exceed in either the

absolute or the relative error test and m steps have not yet been taken, the

process of two h-steps, one 2h-step, and test is continued. If any component

of the difference exceeds in both the absolute and the relative error tests,

cl is doubled, h is halved, and integration begins again at x. The first step

of previous size h was saved and becomes the first step of present size 2h.

The m calculated function values from h-steps are placed in rows (cyi+l)

mod cym_ (cyi+2) mod cym_ ..., (cyi+m) mod cym of the array fh. For Butcher,

the corresponding dependent variable values from h-steps are placed in the

corresponding rows of the array yh; if m is odd, the values of the dependent
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variable after h-step m + i are placed in row (cyi + m + i) mod cym of yh.

For Adams, the dependent variable values from h-step m are placed in the array

yfV. For Cowell, the dependent variable values from h-step m are placed in

the array yiv and from h-step m/2 (m is always even for Cowell) are placed

in yfv. If m is zero, no calculation takes place.

3. Flow Diagram and Program Listin_

Figure 5 is the flow diagram for the starting procedure.

program listing follows at the end of this section.

The
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int = xf-xi(_;;_,_"_---_ B.,= B(,.:,I

R ..... // I h = int/CI

I indx = cyi rood cym

OBTAIH Yl FROH Yhindx USING

ONE RKS STEP OF SIZE 2*h ONE RKS STEP OF SIZE h

OBTAIN Yhnind x FROH Yhindx USING kindx=k+I:nindx fhindx = _(x+k • h, Yhindx)

nindx = (Indx+l) mod cym
indx = nindx

nindx = (indx+1) mod cym

NO

YES indx = nindx __ fhindx = f(x*k, h, yhindx)

Figure 5. Flow Diagram for the General Multistep Method Starting Procedure.



•_anp_ooadHuT%a_%Spoq%_ d_%sT%in_ i_a_u_O _q%_oj u_ex_eTd _oll "(p_nuT%uoo) _ _xn_T_

q 3ZlS aO a31S s_ 3NO II
_NISn _ _ou_ _{ NIV190 FH

,-H
cO

ULk'Opom (I+XpU_) : xpu_u

___ u_Xo pow _%_ = xpu!

d(Zlt3lla_ = ^J,B t31_u! = q
t_ • Z = L3

4 = q •



co
po

_ indx : (indx÷l)m°d cYm _ f'_indx =_(x+k'h'>_'4) _ OBTAIN _IEROM _4 USING L-J OBTAIN _3 FROM y4 USINSI-I ORE RKS STEPOF SIZE2,h I I ONERKS STEPOE SlZE h

NO Y ......

YES indx = (indx÷l)mod cvm
OBTAIN 31 FROM 34 USING

ONE RKS STEP OF SIZE 2" h

Figure 5 (Continued). Flow Diagram for the General Multistep Method Starting Procedure.



(DO

OBTAIN Y3 FROM _4 USING
ONE RKS STEP OF SIZE h

H k = k+l H _ = _ OBTAIN _4 FR_ _3 USIPI$

indx = (indx+I)mod cym fhindx _(x÷k. h,_3)
ONE RKS STEP OF SIZE h

COMP = FALSE

COMP = TRUE

Figure 5 (Continued). Flow Diagram for the General Multistep Method Starting Procedure.
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III. THE EXECUTIVE PROCEDURE

A. Introduction

The executive procedure acts in an administrative and supervisory

capacity. It does the bookkeeping and makes the decisions as to which

methods are to be used_ but does none of the actual integration. The

executive procedure uses as subprocedures five basic integration routines;

these are:

l)

2)

3)

4)

5)

The Adams-Bashforth-Moulton routine_

The Stetter-Gragg-Butcher routine,

The Cowell constant Nth order difference routine_

The Runge-Kutta-Shanks routine_

The start and restart routine

(containing a separate Runge-Kutta-Shanks routine).

These five basic routines do the actual integration. Each is described in

Chapter II of this report.

The executive procedure works in the following way. When a call is made

in the procedure to integrate from point a to the point b, this interval is

divided into eighths. The first eighth of the interval is integrated by one

method for each of two different orders, and the time taken by each recorded.

The second eighth is integrated by another method, also for two different

orders_ and the times recorded. The winners then compete against each other

over the next fourth of the interval. That is_ the fastest order of the first

method and the faster order of the second method are both used to integrate

the second fourth of the interval, and the time taken by each recorded. The

faster method of these two is then presumably the best (fastest) of the four

tried, and it is used (alone) to integrate over the last half of the interval.
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All of the times measured above are then logged in a cumulative history file

and the winners and losers noted.

This file then is used as the basis of selecting which methods and orders

are chosen each time. The selection process is as follows: The first of

the two methods is chosen at random. The second method is chosen to be

the method showing the best history of success among the three remaining

methods. Then within each method the same kind of selection process with

respect to orders is used. In this way the past performance of the different

methods and orders influences the choice of whichare allowed to compete,

such that the more successful have a higher probability of being selected.

B. The Selection Process

There are four methods available for the integration process, and within

each method there are four orders available. The methods and orders are as

follows:

i) The Adams method with orders 4(4), 5(4), 6(4), 7(5).

2) The Butcher formulas with orders 3(4), 5(4), 7(4), 7(5).

3) The Cowell method with orders 7(5), 9(5), 11(5), 13(5).

4) The Shanks formulas with orders 4, 5, 6, 7.

Each order of each multistep method has an associated Runge-Kutta-Shanks

restart procedure order given in parenthesis after the method order. Details

on these methods are given in Chapter ii of this report. The magnetic tape

containing the coefficients has several additional orders of each method, but

the program is now set to use just those mentioned above.

The selection process is the following. The first of two methods is

chosen at random (using a random number generator) from among the four
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available. The second method is chosen to be the method showing the best

history of success amongthe three remaining methods, with the cumulative.

history file being used to determine the degree of success. Then within

each method the samekind of selection process with respect to orders is

used. That is, the first order is chosen at random, and the second order

is chosen on the basis of which of the remaining three has been the most

successful (fastest running) order of that method. Thus it is seen that

the past performance of the different methods and orders influences the

choice of which are allowed to compete_ such that the more successful have

a higher probability of being selected.

In using the time as th_ sole estimate of performance efficiency_ it is

assumedthat all orders and methods have satisfactorily met the accuracy

requirements. The accuracy requirements of each method are met by controlling

step size and making error estimates at each step. The method of error

estimate is different for the different methods. In the Runge-Kutta-Shanks

single step method_ the error is estimated by taking two half steps and

then a whole step. In the Adamsand Butcher methods the difference between

predictor and corrector is used. In the Cowell method a mid-range formula

is used. (Only in the Adamsand the Runge-Kutta-Shanks cases is there good

theoretical justification for using these methods to calculate the actual

error -- the error estimates in the Butcher and Cowell methods are essentially

empirical.)

C. Organization of the History File

The history of the effectiveness of each method is recorded in a file

called '_831HST" and organized in the following manner.
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Associated with each order of each method are two numbers. The first

(a positive number) records the time associated with trials in which this

order was the winner. The second (a negative number) records the time

associated with trails in which it was the loser. The sum of these two

numbers is taken as the "score" or perforn_nce number and will be greater

if the order of this method has been a consistent winner and will be less

(more negative) if it has been a consistent loser.

Associated with each method then is a method score anaZogous to the

order scores just described. That is_ each method has one positive and one

negative number recording the time spent winning and losing respectively.

in addition to this_ a history is also kept of which methods the wins and

losses were against_ but this part of the history is not used in selecting

competitors.

The history file is printed in an output file called "HISTORY." In

describing this, use will be made of an abbreviated notation. A stands for

Adams method_ B for Butcher_ C for Cowell_ and S for Shanks formulas. A

number given following the letter designates the order of that method where

i Stands for the lowest order available_ 2 for the next lowes% etc. Thus

A3 stands for the second highest order Adams method. A sign following the

letter or number designates winning time or losing time for this method-

order. For example_ B2 + designates winning time for Butcher's method, second

lowest order; C- designates losing time for Cowell's method; etc. Finally,

if a letter follows the sign in parenthesis_ this designates which method

the win or loss was against; thus B+(A) designates winning time by Butcher

against Adams. With this notation the organization of the history file is

as follows:
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The first three items (printed on the first line of the output of the

history file) are not times but other bookkeeping items. The first number

gives the date (in the form year, day) that this particular history file

was initialized, that is the date the tape was first created. The second

number gives the total number of times the procedure has been called (using

this particular history file). The third number gives the present value

of the random number used in generating the random number sequence.

Following these three numbers come the cumulative times the various

methods spent winning and losing. These are organized in a 9 row - 8 column

matrix. The first 4 rows give wins and losses of the various orders within

each method, that is the results of the competitive trials over the i/8

sections of the range of integration. Table I gives this organization in

terms of the notation described above.

Following this is a row giving cumulative winning and losing times by

methods; that is_ the results of the trials over the i/4 sections of the

range of integration. This row is organized:

A + A- B+ B- C+ C- S+ S-

The last four rows give a more detailed breakdown of the line above, giving

the method against which the winning and losing times were made. It is

organized as in Table II. It is noted here that entries of the form A+(A),

B-(B), C+C, etc. will all be zero, since methods do not compete against

themselves.
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TABLE I

ORGANIZATION OF _TIVE WINNING

AND LOSING TIMES BY METHOD AND ORDER

Al+ Al" A2+ A2- A3+ A3- A4+ A4-

B1+ BI- _2+ _- B3+ B3- B_+ _4-

cl+ ci- c2+ c2- c3+ c3- c4+ c_-

sl+ Sl- s2+ s2- s3+ s3- s4+ s4-

Notation here: A = Adams, B = Butcher, C = Cowell, S = Shanks;

i = lowest order, 2 = second lowest order, etc;

+ stands for win, - stands for loss.

TABLE II

ORGANIZATION OF CDMULATIVE WINNING

AND LOSING TIMES BY METHOD VS. METHOD

B, ,

%:.':"
h':

!:

_+(A) A-(A) B+(A) B-(A) C+(A) C-(A) S+(A) S-(A)

A+(B) A-(B) _+(S) _-(_) C+(_) C-(B) S+(B) S-(B)

_+(C) A-(C) S+(C) B-(C) C+(C) C-(C) S+(C) S-(C)

_+(S) A-(S) B+(S) B-(S) C+(S) C'(S) S+(S) S-(S)

! •

i/

i_

i̧

Notation here: A = Adams, B = Butcher, C = Cowell, S = Shanks;

+ stands for win; - stands for loss.

A+(S) stands for Adams win against Shanks,

C-(B) stands for Cowell loss against Butcher, etc.

Entries of the form A+(A), or C-(C) etc., should all be zero since a

method does not compete against itself.
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D. Inputs to the Executive Procedure

A call in the executive procedure would look like the following:

DIFEQINT (N, XI, XF, Y, F, P, EA, ER, DX)

Here the identifiers in parenthesis are the inputs to the procedure and

represent the following information:

N is the number of equations in the system to be integrated,

XI is the initial value of the independent variable,

XF is the final value of the independent variable,

Y is the initial values of the dependent variables. Y is a vector

(one dimensional array). At the conclusion of the procedure Y is set to

the final values of the dependent variable; that is, Y is also the output

\

var iab le.

F is the procedure for calculating dy/dx as a function of x and y.

This procedure must be written by the user and describes the system of

differential equations being integrated. It must be written so as to have

four parameters :

(a)

(b)

(c)

(d)

N, the number of equations,

X, the independent variable,

Y, the dependent variable (vector),

FV, the vector values of dy/dx at the point x, y.

The first three parameters are input and FV is the output.

P is the error accumulation parameter. This parameter expresses

the user's opinion as to how the errors are going to accumulate over the range

of integration. For example, if it is expected that the errors will be random

then P would be set to 0.5. If it is expected that the errors will accumulate

linearly then set P = i.

situations can occur.

These are the two most usual cases but other
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EA is the absolute error vector.

absolute errors in the value of Y final.

ER is the relative error vector.

This vector gives the acceptable

This vector gives the acceptable

relative error in the value of Y final. It is the weaker of the two conditions

EA and ER that is met for each component of the vector Y.

DX is the estimated value of the initial step size. This estimate

need not be especially accurate since the individual methods will adjust

the step size to the appropriate value.

E. Updating of the History File and For_ettin_

The times recorded in the history file are cumulative. That is_ after

a competition is held_ the times taken by the competing methods and orders

are added to (for a win) or subtracted from (for a loss) the appropriate

positions in the history file. Thus, the entries in the history tables

represent an index expressing the cumulative past performance.

Decisions as to which method or order within a method is considered to

have the best performance history are made on the basis of the sum of the

win and loss entries for that method or order. The method or order having

the maximum value for this sum is considered to have best history (remembering

that the loss entries are negative). One notes that not all the history file

is used in the decision making process_ in particu!ar_ those entries in

Table II are not used in decision making but are recorded only to give the

user a more detailed account of the competitions.

One further feature is introduced into the learning process and this is

the gradual "forgetting" of events in the more distant past. This is ac-

complished by multiplying those history scores used in the decision making

by a factor less than ones just before the most recent histories are added.
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This causes the events in the distant past to have less influence than those

more recent in determining the performance figure of an order and method.

The factor used is 0.98 but it is not known what would be the optimum factor.

Note that the entries in the history file described in Table II do not

involve forgetting. Since these entries are not used in any decision making

process but only tabulated for the user's interest, forgetting would serve

no practical purpose here. The entries in Table II represent then a total

or unattenuated history of the competition between the various methods.

F. Reading of Coefficients and History Files

Also needed as input to the executive routine are the tables of co-

efficients associated with the various methods and the past performance

history file. These are read in to the procedure the first time the procedure

is called and a flag set (in an element of an array declared OWN) to indicate

that these have been read in once. This information is stored in an array

declared OWN and need not be read in again during the operation of the program.

The coefficients are stored on a tape file called "TAPE831." It contains

the following coefficients:

Adams'method, orders 4 through i0_

Butcher's formulas, orders 3, 5, 7, 9, ii,

Cowell's method, orders 7, 9, ii, 13,

Shanks formulas, orders 4, 5, 6, 7, 7, 8, 8.

Only four orders of each method are actually used.

The history is stored in a tape file called _831HST." This tape must

be mounted with a write ring and is updated every time the procedure is called.

G. Outputs of the Executive Procedure
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The executive procedure returns the final value of the independent

variable as its principal output. This is returned through the same variable_

Y (a vector), described in Inputs to the Procedure, paragraph D of this Chapter.

There are several other types of output that are printed. First, when

the procedure is called for the first time and reads in the past performance

history file, it prints out this history in a print file called "HISTORY".

Also printed out in this file is a pair of numbers giving the method

and order that is about to be used and the times for each order and method

after the comparisons have been made. This information is printed in a two

digit code, the first digit representing the method and the second (if present)

indicating the order. The method code is:

O represents Adams_

1 represents Butcher_

2 represents Cowell_

3 represents Shanks.

The order code is such that 0 represents the lowest order_ 1 represents the

next lowest order, etc.

Also printed in the file "HISTORY" are the results of comparison runs

in which the results (values of the dependent variable) of the two competing

method orders differ by more than twice the allowed errors. Also printed are

the initial and final values of the independent variabie_ the two differing

values of the dependent variables and an integer telling which cor_0onent of

the dependent variable appears to be in error.

Other messages associated with anomoious conditions are also printed in

this file. In particular an integer overflow condition occurs if the step

size collapses. Recovery from step size collapse can usually be effected
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but the message"INTEGEROVERFLOW"will be printed in file "HISTORY"whene_'er

it occurs.

Finally_ the procedure outputs the updated performance history by writing

it back into the '_831HST" tape file.

H. Flow Diagram and Program Listing

Figure 6 is the flow diagram for the executive procedure. The program

listing for the executive procedure follows at the end of this section. Since

the individual methods and restart programs are also listed elsewhere in this

report_ their listing here is given in "squeezed" form.
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READ IN HISTORYCALL YES FILE "A831HST"

NO

7

WRITE HISTORY

IN FILE

"HISTORY"

..... I I SELECT TWO I I SELECT TWO _ COHPARE THE TWO ORDERS OF

_-,_L_Tu_ I--_ ORDERS FOR _ ORDERS FOR FIRST METHOD BY INTEGRATING

............ I I FIRST METHOD I I SECOND METHOD OVER 118 OF INTERVAL

PRINT RESULTS IN

ERROR IN FILE
"HISTORY". AVERAGE COMPARE TWO ORDERS OF SECOND II PRINT RESULTS IN

METHOD BY INTEGRATING OVER I------_ERROR IN FILE
i/8 OF INTERVAL II "HISTORY". AVERAGE

I I

H¸ HCOMPARE WINNING ORDERS OF PRINT RESULTS IN UP DATE HISTORY WITH SCORES FOR

EACH METHOD BY INTEGRATING ERROR IN FILE WINNERS AND LOSERS AND WRITE IN

OVER I/4 OF INTERVAL "HISTORY". AVERAGE FILE "A831HST ^. WRITE SCORESIN FILE "HISTORY"

INTEGRATE LAST HALF

OF INTERVAL BY WINNING

METHOD

Figure 6. Flow Diagram for the Executive Procedure.
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(2xQ-2),OBN]_

[OIN];REAL Hp
HANGEpC2HQPS,

,QTIMES2JBDDL
MES2*Q+QJQT2M

EFFEMU+Q];END

NTERVAL*XF'XI

ERVAL/CtIEND;

OOD*TRUE;REST

QT2Ht,;RESET;N
_HB[MU];HBSMtJ
SMUxFMUI÷C[I]

X_YC,FC);ALLI

]XFC[I])THEN

SQZ+C[I];F(N_

NGE>ABS(HRL[I

THEN J*O;TDOS
FP[I];ERROR÷

YD[I]eYCI EL

I]xYCI THEN G

MALL,FALSE;EN

•OTHEN C2_C2-

THEN IF PC_QT

M1 THEN ;ZERO

JZERD,O;GO T

MU÷ISTEP 1UN

B,BSpHB,HBS[O:Q=I],CpYPpYC,YD,FPRFC_EAUpEAL,ERUpERL,HAL,HRLO000

XpCU,C2pGRpYCI_BSQZ_FHJI,FMUI_HBMU,MIDP,HBSMUpHBSQZ_ERROR,COOO0

INTERVAL;INTEGER IpJ_K,CI,DC._PCpMU_MULT,JZERO,QT2MI,QMINUSIO000

EAN BGDDD_FLIPPED_TDDSMAL1,;C2MQPS_I/2*(Q_5);QMINUSI÷Q-I;QTIO000

IeQTIMES2"I_ALLMU BEGIN BEMU]÷ADAMSCOEFF[MU];BS[MU]_ADAMSCDOO00

_BSQZ*ADAHSCOEFF[QTIMES23;GR_ADAMSCOEFF[QTIMES2÷1];CI*I;H_IOOOO

;DX÷ABS(DX);WH!LE ABS(H)>DX OR CI<Q DO BEGIN CI_CI+CI;H_INTOOOO

C2*CI;JZERD_J*O;F(N,XI_Y],FH[O,*]);X÷XI;ALLI YB[I]÷YI[I];BGO000

ARTtPOINTS;cI_CIXMULT;C2,C2xMULT-Q;IF(J÷JZERD-I)<OTHEN J÷J+OOO0

EXTSTEP:X_XF-C2xH;ALLMU BEGIN IF(J*J+I)=QT2MI THEN J*O;HBMUOO00

*HBS[MU];ALLI BEGIN YP[I]_(FMUI÷FH[J,I])XHBMU+YP[I];C[I]_HBOOOO

;END;END;F(N_X,YP_FP);FLIPIALLI YC[I]_FP[I]xHBSQZ+C[I];F(N,OOO0

IF(CHANGE÷ABS(FC[I]-FP[I]))>HAL[I]-THEN IF CHANGE>ABS(HRL[IOOOO

GO TD FLOP;FLIPPED÷TRUE;GO TO TEST;FLDP:ALLI YC[I]_FC[I]xHBOO00

X,YC_FP);ALLI IF(CHANGE_ABS(FP[I]-FC[I]))>HAL[I]THEN IF CHAO000

]XFP[I])THEN GO TO FLIP;FLIPPED_FALSE;TEST:IF(J_J+I)=QT2MI OOOO

MALL_TRUE;ALLI BEGIN FHJI*FH[J,I]_IF FLIPPED, THEN FC[I]ELSEOOO0
ABS(YP[II-(YCI_C[I],YP[I]_(FHJIxHBSQZ+C[I])));IF BGDDD THENOOOO

SE YB[I]_YCI;YCI_ABS(YCI);IF ERROR>EAU[I]THEN IF ERROR>ERU[OOOO

D TO HALF;IF ERROR>EAL[I]THEN IF ERRDR>ERL[I]xYCI THEN TDOSOOOO
D;PC÷PC+I;IF BGOOD THEN BGDDD_FALSE ELSE BGODD_TRUE;IF C2_I0000

I,OELSE GO TO FINISH;IF TOOSMALL THEN BEGIN DC_DC+I;IF DC_3OOOO

2MI THEN IF C2_ITHEN GO TO DUBBLE;IF(JZERO÷(J_JZERO)+I)=QT2OOOO

_O;GO TO NEXTSTEP;END;DC_O;IF(JZERO_(J_JZERD)_I)=QT2MI THENOO00

D NEXTSTEP;DUBBLE:CI_Cl DIV 2;C2÷(C2-1,0)/2,O;RESET;K_J;FORO000
TIL QMINUSI DO BEGIN IF(J÷J-I)<OTHEN J÷J+QT2MI;IF(K_K-2)<OTOOOO

HEN K

;GO T

+C2+2

L; FC
IF C2

*K+QT2HI;ALLI FH[J,I]*FH[K,I];END;IF(J÷(JZERO_J)-I)<OTHEN J_J+QT2MIOOO0
D NEXTSTEP;HALF:IF(J÷J-I)<OTHEN J_J+QT2MI;JZERO_J;Cl_CI¢CI;IF(C2_C200OO

,O)<Q THEN GO TO FINISH;GO TD RESTART;FINISHIIF NDT FLIPPED THEN ALOOO0

[I]*FP[I];IF NOT BGODD THEN ALL; YB[I]_YD[I];X_XF'INTERVALx(C2/CI);O000
#OTHEN CALLOB;ALLI YF[I]_YB[I];END;PROCEDURE BUTCHER(N,XI,XF,K,EA,EOO00

R,DX,CON_FUNCTIDN,Ex,RKC,START_SHANKS_YIV,RKSNF,RKSDDR);VALUE N,XI_XF,K,OOOO

DX_CDN,EX_RKSNF_RKSODR;REAL ARRAy YIV[O];INTEGER RKSNF,RKSDDR;INTEGER N,OOOO
K;PROCEDURE FUNCTION,SHANKS;INTEGER PROCEDURE START;REAL XI,XF,DX,EX;REAOOO0

L ARRAY RKC[O];REAL ARRAY CDN,EA,ER[O];BEGIN REAL ARRAY Y,F[OII6,08N];REOOOO

AL SCI,X;REAL DX2;REAL DXI,CDA,COB,COLA_CDLB,COGA,COGB,TEST,TEMPY,TEMPF,OOOO
AI_A2_A3_c2;INTEGER I_J_CYL,INDEX,CI,M;INTEGER CYL3;REAL ARRAY SUMYIP._SUOOOO

MYP,SUMYC_FVI[O:N];LABEL STRRT,RESTART,FINISH;REAL P2,TI_T2;INTEGER CDUNOOO0

T,TDTCNT_CYLI_CYL2,MI;LABEL DUBSRT;REAL ARRAY CDD[OI3xK];INTEGER CYD;INTOOO0

EGER COUNTER;INTEGER KMI;REAL OMT,K6_K61,K62;REAL INTV;INTEGER KM3,J2,J30OO0

7_

T5
?'6

7B
79
8O
Bl
82
83
Ba
85
86
87
88
89
90
91
92
93
9_
95
96
97'
98
99

100
101
10_
103
10/4
105
106
107
108

].09
1.10
111
112
113
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_J6_REAL XDXTpXDXJREAL ARRAY RE_AE[OSN]3FOR I*ISTEP tUNTIL N DO Y[O,I]_YO000 11_

IV[I]_IF K=tOR K=20R K=3THEN OMT_OoSELSE OMT_2/3_K6e6xKJK6t_(6xK)+IIK62_O000 115
(6xK)÷2;KMt_K-t;INTV_XF-XI;X_XIICt_I;WHILE(CI<K+I)OR((ABS(INTV)ICI)>ABS(O000 t16

DX))DO Cl_Cl÷Ct_C2_CllP2_t/(2*((2xK)_4))_CYL_OJCYO_O_TOTCNT_O3FUNCTION(NO000 t17
_XI_Y[Op*]pF[O**])_RESTART;COUNTER_KM}_Ct_Ctx(I_START(N_XI_XF_Ct_EA_ER_FO000 ttB
UNCTION*KMtpXpYIV_YpFpYIVpCYOptG_2pEX_RKSNF_RKC))lC2_C2xI=KMt_CYL_CYOJDUO000 t19
BSRT;DX_INTV/Ct_KM3_3xKMIJFOR J_osTEP 3UNTIL KM3 DO BEGIN J2_2xJJCOO{J]_O000 t_O
CON£J2+t]xDX_COOIJ_I]_CON[J2_3]xDX_COO£J+2]_CON£J2+B]xDXlENDISCI_Ct*EX_FO000 t21
OR I÷tSTEP tUNTIL N DO BEGIN AE[_]*EA[I]/SCllRE{_]_ER[I]/SCt_ENDIAI÷CON[O000 t_2
KG]xDXJA2_CDN[K61]xDXlA3÷CON{K62]xDX_$TRRT:XDXT_X+(DXxOMT)lXDX_X_DX_FOR 0000 t_3
I*tSTEP tUNTIL N DO SUMYIP{I]_SUMYP[I]_SUMYC[I]_O_FOR J_OSTEP 1UNTIL KMIO000 12_

DO BEGIN CYL3_(KMI"J÷CYL)MOD 16_J3_3xJJJ6_6xJ_COA_CON{J6]JCOB_COOEJ3]_CO000 t_S
OLA_CON[J6÷2]_COLB_COO[J3+I]_COGA_CONtJ6÷a]_COGB÷COO[J3_2]IFOR I_ISTEP 10000 t_6
UNTIL N DO BEGIN TEMPY÷Y£CYL3_I]ITEMPF_F{CYL3_I]_SUMYIP[I]_SUMYIP[I]÷(CO0000 127
AXTEHPY)+(COBXTEMPF)_SUMYP[I]_SUMYP[I]+(COLAXTEMPY)+(COLBXTEMPF)ISUMYC{IO000 t28
]_SUMYC[I]+(COGAxTEMPY)+(COGBxTEMPF)_ENDIENDJFUNCTION(N_XDXT_SUMYIP_FVt)O000 |_9
_FOR I_ISTEP tUNTIL N DO BEGIN TEMPF_FVt[I]_SUMYP[I]_SUMYP{I]¢(AtxTEMPF)O000 |30
_SUMYC[I]÷SUMYC[I]+(A2xTEMPF)IEND_FUNCTION(N_XDX_SUMYP_FVt)ICYL_(CYL+t)MO000 131
OD 161CYO_(CYL÷KM_)MOD 16_COUNT_O_FOR I_tSTEP 1UNTIL N DO BEGIN TEMPY_SUO000 t3_
MYC[I]+(A3XFVt[I]);TI_AE£I];T2_ABS(RE[I]XTEMPY)_TEST÷ABS(TEMPY-SUMYP£I])O000 t33
_IFTEST>T1 AND TEST>T2 THEN BEGIN C2_C2÷C2_CYL_(CYL+tS)MOD t6_CYD_(CYL+O000 t3a
KMt)MOD 161IF C2<KM! THEN BEGIN SHANKS(N_X_XF_Y[CYO_*]_FUNCTION_RKSNF_RKO000 t35
SODR_RKC_EX,EA_ER_DX)IGD TO FINISH_ENDtCI_CI+CI_60 TO RESTARTIEND_Y[CYO_O000 136
I]+TEMPY_IF TEST<P2xT1 OR TEST<P2xT2 THEN CDUNT_COUNT+t_ENDtC2_C2-I_X_XFO000 t37
-(DXxC2)_IF C2=OTHEN GO TO FINISH_IF C2<tTHEN BEGIN SHANKS(N_X_XF_Y[CYD_O000 138
*]_FUNCTION,RKSNF_RKSODR_RKC,EX_EA_ER_DX)_GO TO FINISH_ENDIFUNCTIDN(N_X_O000 139
Y[CYO_*]_F[CYD.*])_IF CDUNT=N THEN BEGIN TOTCNT_TOTCNT#llIF TOTCNT_3THENO000 1_0

BEGIN IF COUNTER22xK THEN BEGIN COUNTER_OIC_C2/21Ct_Ct/2JIFC2<ITHEN BOO00 |_1
EGIN SHANKS(N_X_XF_Y{CYO_*]_FUNCTION_RKSNF,RKSODR_RKC_EX_EA_ER_DX)tGO TO0000 t_2

FINISH_END_TOTCNT_OIFOR I_ISTEP 1UNTIL N DO FOR J÷ISTEP 1UNTIL KM! DO BOO00 1_3
EGIN CYLI_(CYO+16"J)MOD t6JCYL2_(CYO_16-(2xJ))MDD 161Y{CYLt_I]_Y[CYL2_I]O000 1_
_F[CYLI_I]_F[CYL2_I]_END_GO TO DUBSRT_ENDIEND_END_COUNTER_COUNTER+I_GO TO000 1_5
O. STRRT_FINISHIFDR I÷tSTEP ! UNTIl. N DO YIV[I]_Y_CYO,I]_END BUTCHER_PRDCO000 |_6
EDURE COHELL(N,XI_XF_Y,F_EA_ER_P_DXpRKSFN_RKSORDER,RKSCOEFF_CDWELLCOEFO000 1_7
F_START_SHANKS)_VALUE N_XI_XF_P_DX_RKSFN_RKSORDERpQ JINTEGER N_RKSFN,RKSO000 1_8
DRDER_Q IREAL XI_XF.P_DX _REAL ARRAY Y_EA_ER_RKSCOEFF_COHELLCOEFF[O]_PRO0000 t_9
CEDURE FpSHANKS JINTEGER PROCEDURE START _BEGIN _NTEGER C1,M_MMI_QPI_TQPO000 150
t_INDX_IIpI2_I3_IpJ,K_CYI _INTEGER CORRECTCNT _REAL INT_C2_DFACTDR_X_H_TO000 151
I_T2_T3,T_TS_T6 _BODLEAN DFLAG_PFLAG IREAL ARRAY FH[OIQ +Q_OIN],YMIDt,YO000 t52
P_YC_YM_CS_FPpHDMIF_HDM1FHID_EAV_ERV_EAVD,ERVD[O_N]_PCOEFF_CCDEFF_MCOEFFO000 t53
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S=YM[J]+T1 xFH[II_J]+T2 xFH[I2_J]END /YF DFLAG THEN BEGIN FOR J s=l STEPO000 194
t UNTIL N DO IF (T2 S=ABS((T3 S=Y_J])'YM[J])}>EAVD[J]THEN BEGIN IF T2 >OOO0 195

ERVD[J]xABS(T3)THEN BEGIN IF T2 >EAV[J]THEN BEGIN IF T2 >ERV[J]xABS(T3)TO000 196
HEN GO TO L_ END /GO TO L3 END END /C2 I=C2 =H /C2 I=C2 /2o0 _IF PFLAG TOOO0 19T
HEN FOR J s=l STEP I UNT£L N DO YtJ]I=YP[J]ELSE FOR J t=1 STEP 1 UNTIL NOOO0 198

DO Y[J]t=YC[J]/C! I=Ct DIV 2 /IF C2 <M THEN GO TO CLOSER /INDX $=INDX +0000 199
I /FOR K S=l STEP I UNTIL Q DO BEGIN ]NDX I=(INDX ÷I)MOD TQPt lit t=(INDOOOO 200
X ÷K)MDD TQPt /FOR J s=l STEP 1 UNTIL N DO FH[INDX_J]I=FH[II_J]END /GO TO000 201
O DOUBLER END ;J s=O IL3sFOR J t=J +1 STEP I UNTIL' N DO IF (T2 s=ABS((T30OOO 202

s=Y[J])=YH[J]))>EAV[J]THEN BEGIN IF T2 >ERV[J]xABS(T3)THEN BEGIN L4SINDOOO0 203
X I=(CYI =M)MOD TQP1 ILSsC1 t=C1 +C1 JX ==XF -C2 xH ;C2 s=C2 ÷C2 ;GO TO OOO0 204
STARTER END END /C2 t=C2 =M /IF C2 _M THEN BEGIN IF PFLAG THEN FOR J ==10000 205

STEP 1 UNTIL N DO BEGIN YHIDI[J]s=Y[J]/Y[J]t=YP{J]/HDM1FMID[J]S=HDMtF[JOOO0 206
]END ELSE FOR J S=l STEP ! UNTIL N DO BEGIN YHIDI[J]I=Y[J]IY[J]I=YC[J];HO00O 20T
DM1FMID[J]t=HOM1F[J]END ;DFLAG I=TRUE /GO TO ACCEPT END /IF PFLAG THEN FOOO0 208
OR J s=t STEP 1 UNTIL N DO Y[J]s=YP[J]ELSE FOR J ;=1 STEP I UNTIL N DO YOOOO 209
[J]I=YC[J]JCLOSERSlF C2 >0 THEN SHANKS(NpXpXF@Y,F_RKSFNpRKSDRDER_RKSCOEFO000 2!0
FpP_EAJER_ABS(INT)/Ct)/END /PROCEDURE SHANKS{NJXI_XF_YV_FeM_ORDERpCFpP_EOOO0 211
ApER,DX)IVALUE N_XIpXF,HpORDERpP.DXIINTEGER N_H,ORDER/REAL XI_XFI_P_DX/REOOO0 212
AL ARRAY YV_CF,EApER[O]/PROCEDURE F/BEGIN INTEGER I,J_K_L_COUNT_COUNT2_IOOOO 213
IpNCF_INTEGER NCF1/INTEGER DKTR/REAL EFACT;REAL BETA_DCDUNTpDXD_DXH_DXT_O000 21_
EFACTOR,ERANGE_ES_GAMMApX_XM/BOOLEAN CFSW,DSH/REAL ARRAY CFD{OI(M÷3)xH-2OOOO 215
]_FV[OsH-t_OsN]_GVpYC_YH_YP[OtN];DEFINE CFH=CFD#/LABEL LI_L2_EXIT/INTEGEO000 216
R STEPR,STEPS_M_M=t/STEPS_STEPR_O/DXD÷DXT_XF-XI_IF DXT=OTHEN GO TO EXIT;OOO0 217
IF DX=OTHEN DX_DXD/COUNT_t;WHILE ABS(DX)<ABS(DXD}DO BEGIN CDUNT_CDUNT_CDO000 218
UNT/DXD_DXT/COUNTIEND/COUNT2_CDUNT+COUNT/DXH_DXT/COUNT2/DCOUNT÷COUNT/EFAO000 219
CT÷I;FOR I_tS_EP 1UNTIL ORDER DO EFACT_EFACT÷EFACTIERANGE÷O.t25/EFACT/EFO000 220
ACT_/EFACT/EFACTDR_COUNT*PxEFACT/DKTR_O/NCFt_(NxH+M)DIV 2÷M_M/NCF_NCFI+O000 221
I;CFSH_FALSE;FOR I_OSTEP tUNTIL NCF1 DO BEGIN CFD{I-]_CF[I]XDXDICFH[I+NCFO000 222
]÷CF[I]xDXH_END/X_XI/XM÷XI+DXH/LIIDSH_TRUE_F(N_XpYV_GV)_IF. CFSH THEN L_NOOO0 223
CF1 ELSE L÷-I/FDR I_ISTEP 1UNTIL M DO BEGIN I_÷I-t/L_L÷IIBETA_CFD[L]/FOROOOO 22_

K_ISTEP 1UNTIL N DO YP[K]_GV[K]xBETA+YV[K]/FOR J_I, STEP tUNT_L II DO BEGOOO0 225
IN L_L÷I/BETA_CFD[L]/FOR K_ISTEP 1UNTIL N DO YP[K]_FV[J_K]XBETA÷YP[K]/ENO000 226
D_L_L÷t/F(N_CFD[L]+X,YPpFV[Ip_])/END/L_L_I/GAMMA_CFD[L]/FOR K_ISTEP tUNTOO00 2_7
IL N DO YP[K]_GV[K]xGAHMA_YVCK]/FDR I_ISTEP 1UNTIL N DO BEGIN L_L÷t/GAHHO000 228
A_CFD[L]/FOR K_ISTEP 1UNTIL N DO YP[K]_FV[I,K]xGAMMA÷YP[K]/END/L2SIF CFSO000 229
W THEN L_=t_FOR I_tSTEP !UNTIL M DO BEGIN II_-t_L_L_I/BETA_CFH[L]/FOR KO000 230
• ISTEP 1UNTIL N DO YM£K]_GV[K]XBETA_YV[K]/FOR J_STEP 1UNTIL II DO BEGINOOOO 231

L_L÷t;BETA_CFH[L]/FOR K_ISTEP 1UNTIL N DO YH[K]_FV[JpK]wBETA÷YM[K]/END/O000 232
L_L÷I/F(N_CFH[L]÷XpYM_FV[_*])/END_L_L_t/GAMMA÷CFH[L]_FOR K_ISTEP 1UNTILOO00 233
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oooo_I d31sO,I _0_ NI53B 3533 ON3f3S3V],MSJOIQXOx[I]JD,[I]Oj3 00 I_QN IIINAI

0000 d31SO,I _0_ NI93B N3HI M533 JIfL3V_3xd_INAO3,8013V_3fINAO3/IXQ,QXQfOXQ,

O000HXQf_/LNflOOQ,INAO3Qf_ AIO iNflOO*lNflOD_lNflO3*_lNflO3fI+SiNO,Sl_O NI938 N3H
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O000O(X*IXfiOV33e_OlOV33f_*_lNflO3fI*lNflOOO*lNAOOft÷alHO*alNQ N3HlI<lNflOOO _I

0000 NI93B N3HL MSO 8DI>INAODQ _If3S_V_÷MSO N3HII=INA03Q _I NI93B N3HI_>INAO

O000OO _IfIX+QXQx(INAO30-INAO3}*XfIIX3 Di 09 N3HLO=INA03Q _If[_]3A_[H]AA OQ

O000N 7ILNAt d31St,H _03fI+$d31S,Sd3iSfI-INAOOQ*INAOOOfON3fON3|357V_÷MSO N3H
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O000B N3HI MS33 3IfiOV33xd*ZNAO3¢BOI3V33f_INAO3/IXQ÷HXOfHXQ¢QXOflNAOOG+INA03
O0000_INAO3OfINAO3+INAO3¢_INAOOf_INAOOeINADOft+Bd31$÷_d31$f3S3V3_M$O NI_3B N
O0003H/[_]83x([_]OA)SBV2S3 3I N3HI[N]V3_$3 _I NI93B N3HIO#53 3IfaOlOV_3x([N]
O000dA-[H]OA)SBV_S3 NI93B OQ N,_IINA_ d31S_*H _03fQN3f[H]OA+VHHVgx[_I]A_[H
O00033A 00 N ]IINAI d31SI*H _O_f[_]H33÷VHHVgft+]*] NI93B 00 H _IINfll d31SO÷I
0000 _O_f[N]HA_[N]3A OQ N 31iNfll d3iSI_H _O_fQN3f([_I]A_OX_HX+[3]H_O_N)_fl

O000÷3*3fQN3f[H]OX+VL3Bx[H_P]A3e[H]3_ OQ N 3IINflI d31$I*H BO3f[l]H3O*Vl3gfI+
00001÷3 NI93B OQ II 3ILNAI d31SO,r BO3f[H]HA*[H]OX OQ N 3IiNfll d31SI*H B03fl

O000=l*II N1938 00 H ]IINAI d31St*I 803fI33N÷3 35731-_3 N3HI MSj3 31f([*_O]A

O0003_HA_HX_N)3fGN3f[N]HA+VHHVgx[N_I]A3*[H]HA 00 N 3IINAI d31SI*H _03f[7]H33
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F-J
0

OWN INTEGER JpSpK_

OWN INTEGER ARRAY AT_BJ[O_3]J

LIST LST(FOR J:='2 STEP I UNTIL 72 DO Q[J])J

DEFINE HEREBEFDRE =Qt73]#_ALLJ =FOR J ==1 STEP I UNTIL N DO #pYOBYY

=ALLJ YO[J]S=Y[J]#_SETYtANDY =ALLJ
BEGIN

YIEJ]|=Y[J];
Y[J]I=YO[J]

END #;

L_BEL L29pLIpL2_L3_L4pL5_L6pLTpMOO_MOI_MO2_MO3,M10pMtI_Mt2,Mt3_M20J
M21,M22_M23_M30,M31_M32pM33J
SWITCH SW t=MOO_MOlpMO2,MO3_MIO_Mtl_M12,M13_M20pM21_M22eM23_M3OpM31
,M32_M33J
SWITCH RETURN ==LI_L2_L3_L4_LSpL6_LTI

00026000
000270O0
00028000
OO029000
00030000
00031000
00032000

OOO3300O
00034000
00035000
00036000
00037000
00038000
00039000

INTEGER

JTBET_TBETI,TBET2pBETBESTpBESTM

ARRAYYO_YI[OsN]_
PROCEDURE RECDRDORDERS(M_X_XT,Y_Y_)J

VALUE M_XpXT_Y_YT3

INTEGER M_XpXT_Y_YTJ

LpALFpALFlpALF2,BET_BETI_BET2,ALFBEST_BESTO_TALF_TALFI_TALF200040000

BEGIN
KX I=KY t=1 +8xMI
KX.i=KX +2xX_
KY I=KY +2xY_
IF XT <YT THEN

BEGIN

Q[KY+I]==Q[KY+I]-YT_

Q[KX ]:=Q[KX ]+XT_

ENO_
IF YT <XT THEN
BEGIN

Q[KX+I];=Q[KX+I]_XT_
Q[KY ]I=Q[KY ]_YT_

ENDI

ENDI
PROCEDURE RECDRDMETHOOS(X_XT_Y_YT)_

000_1000
O00q2000
000_3000
000_4000
O00a5000
000_6000

000_7000
000_8000
00049000
00050000
0O051000
00052000
00053000
0005_000
00055000
00056000
O005ZO00
00058000
00059000
00060000
00061000
00062000
00063000
00064000
O0065O0O
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l-J

Xt=BJ[O]_ 00106000
Y #=IF AT[I]_AT[2]THEN IF AT(t]_At[3]THEN BJ[1]ELSE BJ(3]ELSE IF O010TO00
AT[2]_ATC3]THEN BJ[2]ELSE BJ[3]t 00108000

END;

PROCEDURE SELECTMETHODS(X_Y)I
INTEGER XpY;

BEGIN

JI=Q[O]8=(Q[O]x4093 +3000001)MOD 16777216 1
'J 8=Ji841

FDR S I=0 STEP I UNTIL 3 DD

BEGIN

J I=(J+I)MDD a)

K I=33 +2xJ)
AT[S]==Q[K]+Q[K+I]J
BJ{S]I=J1

ENDJ
XI=BJ[O]/

00109000
00110000
00111000
00112000
00113000
0011400O
00115000
00116000
00117000
00118000
00119000

00120000
00121000
00122000
00123000
0012a000
00125000

Y I=IF AT[t]_AT[2]THEN IF AT[I]_AT[3]THEN BJ[I]ELSE BJI3]ELSE IF 00126000

AT{2]_AT[3]THEN BJ[2]ELSE_ BJ£3]_ O012TOO0

END/
IF HEREBEFORE #"YES"THEN
BEGIN

LABEL LIt
FILE IN TAPEB31 2(2_90)J

00128000
00129000
00130000
00131000
00132000
00133000

FORMAT FM ("SEND THIS HISTORY F_LE AND THE PUNCHED CARDS TO L J GA00134000
LLAHER VIA "_"CAMPUS MAIL"I///XS_AS_ItOpItOI(8IIO))/

FORMAT FORM(I(5E20,11))I

INTEGER J_KDSI

WHILE TRUE .DO READ(A831HST_TS,Q(*])[LISLI]_

LIIREWIND(A831HST)I

COMMENT READ COEFoFILEI

FDR J I=0 STEP I UNTIL 3 DO FOR K 8=0 STEP I UNTIL 3 DO
BEGIN

IF J=2 AND K=O THEN SPACE(TAPE831_%)I

IF J=1 AND K=O THEN SPACE(TAPE831_5)/

READ(TAPE831_40_CDEF(JpK_*])J

00135000
00136000
0013T000
00138000
00139000
001_0000
00141000
00142000
001q3000
oo14aooo
00145000
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I-J
I-'

L_ITBET2 :=TIME(?)'TBET2_
AC;
At=C;
YOBYY I=(Y[J]+YJ[J])/2;
CI=A+DDXx2;
ALFBEST :=IF TALFt_TALF2 THEN
BETBEST I=IF TBETt_TBET2 THEN
WRITE(PUN ,F2It,ALF,ALFBEST);
TALF I=TIME(2);
L:=5;
G'O TO SH[4xALF+ALFBEST+I];
L5:TALF :=TIME(_)'TALF ;
SETY1ANDY;
WRITE(PUN ,F211,BET,BETBEST);
TBET :=TIME(2);

L;=6;
GO TO SW[4xBET+BETBEST+I];
L6ITBET I=TIME(2)'TBET ;
AC;
A:=C;
YOBYY :=(Y[J]÷YI[J])/2;
C:=XF;

ALF1 ELSE ALF2;
BETt ELSE BET2;

FOR J :=1 STEP 1 UNTIL 40 DO Q[J]:=OIJ]xO=980;
RECORDORDERS(ALF,ALFI_TALFt,ALF2_TALF2);
RECORDORDERS(BET_BETIpTBETlpBET2_TBET2);
RECORDMETHODS(ALF,TALF,BETpTBET);
Q[-1]:=Q[=1]+t;
WRITE(A831HST_75,0[*]);
WRITE(PUN ,FH5IIO_ALF_ALF1,TALF1,ALF_ALF2_TALF2"BET_BETt_TRETI"BET"
BET2_TBET2,ALF,TALF,BET,TBET,Q['I])I
IF.TALF STBET THEN
BEGIN

BESTM :=ALF;
BESTO :=ALFBEST

END ELSE.
BEGIN

BESTM :=BET_

BESTB :=BETBEST
END;
L 1=7;

00186000
0018T000
00188000
00189000

00190000
00191000
00192000
00193000
0019_000
00195000
OO1960OO
00197000
00198000
OO1990OO
00200000
OO201000
002020O0
00203000
00204000
00205000
00206000
00207000
00208000
00209000
00210000
00211000
OO21200O
00213000
00214000
00215000
00216000
00217000

00218000
oo219boo
00220000
oo221boo
00222000
00223000
00224000
00225000
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M3OICOMMENT_
SHANKS(N,ApC_YpF,4p4_COEF[3_O**]_P_EApERpDX)I
GO TO L29;
M311CDMMENT;
SHANKS(NpApC,YpFp5_5,COEF[3_lp*]_P_EApER,DX);
GO TO L29;
M32;COMMENT;
SHANKS(.NJA,C_YpF,6_6_COEF[3_2P*]_P_EA_ER*DX);
GOTO L29; "
M331COMMENT;
SHANKS(N,A_CPY,F,TpT,COEF[3,3,*]_P_EApER_DX);
L29IGO TO RETURN[L];
L39:HRI!TE(PUN,FMINTOVR);

GOTO H30;

END;
LT:

END;

00266000
00267000
00268000
00269000
0O27O0OO
00271000
00272000
00273000
00274000

00275000
00276000

00277000
00278b00
00279000
oo28oboo
00281000
002820O0
00283000
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IV. RESULTS AND CONCLUSIONS

A. Applications

Three types of problems were used to exercise this integration procedure.

The first type is the Arenstorf orbits of the restricted three body problem.

The second is the system of linear differential equations associated with

Fourier transforms. The third type is the system of linear equations obtained

from a discretization of the partial differential equation for the vibrating

string.

The first of these is characterized by the necessity of frequent step

size change. The other two .types are characterized by having a large number

(20 to i00) of coupled equations.

B. Results

The executive routine performed quite satisfactorily. Learning took

place as was desired_ the procedure adapting readily to the characteristics

of a particular problem and accuracy.

The results of rumning with a variety of problems and accuracies are

that no particular method seems to be exceptionally superior to any other.

It did appear that for the accuracy range used (10 -3 to 10 -9 ) certain orders

of some methods were inappropriate. Also for a given method one particular

order usually dominated_ but which one dominated depended on the accuracy

being asked and to some extent on the problem.

All methods performed well and_ for different problems_ different methods

showed up more successfully. The Runge-Kutta-Shanks method was usually faster

for problems where frequent step size changes were required_ but the multi-

step methods usually performed better when long runs of uniform step size
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were appropriate. Of the multistep methods, that of Adamswas usually the

fastest.

The performance of the various orders of each method was as follows:

For the Adamsmethod_ 6th order wasbest most often for these

accuracies, with 5th order next fastest.

Of the Butcher formulas, the 5th order wasmost often the fastest.

No clear cut case was established for second best, but it was evident that

9th order or higher was clearly too slow at these accuracies to be included

among the possible orders.

For the Cowell method, 6th order was usually the best. 12th order

and higher were too slow and should not be used at these accuracies.

Of the Shanks formulas_ the 4th order was usually the fastest, with

the 5th and 6th orders not too far behind.

C. Conclusions

The results justify the conclusion that'the present program would be

suitable and effective as a general library program for integrating systems

of differential equations. It was evident that no particular method or order

is exceptionally superior to all the others. Depending on the accuracy and

the problem, different methods and orders are best. The executive routine

does a satisfactory job of finding a good method and order for each indivAdual

problem.

D. Suggestions for Further Study

Several additional tasks and improvements to the present project can be

envisioned.

The first additional task would be to convert the integration procedure

to double precision (22 decimal places). This would allow an exploration
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of a wider range of accuracies and order. Also at the higher accuracies

more striking differences in the efficiencies of the various methods and

orders are expected to occur. Experiments of the type carried out in

single precision could then be done in double precision and the results

extended over a wider range of accuracies and orders.

As a second additional task_ a further investigation should be carried

out into the correlation between order and accuracies. The present program

does not try to anticipate the optimum order from the accuracy requirements.

There should be a correlation between accuracy and optimum order, This

could be built into the program either on an empirical basis or preferably

as a learning function; that is_ as a correlation to be learned by the program

from the running experience.

A third suggestion for further work would be to make improvements in the

learning mechanism. One such possibility just mentioned is to incorporate the

learning of the correlation between order and accuracy. Also an investigation

of the optimumrate of "forgetting" could be undertaken. The whole mechanism

of learning should be investigated more thoroughly for the purpose of optimizing

the learning process.

Other revisions in the program or extensions of this work would be to

improve or refine the step size and error controlj to do more experimenting

with a wider variety of problems_ and possibly to incorporate other integra-

tion methods into the program.

Respectfu_-_ubmitted,

I.'E. Perlin

Project Director
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